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ABSTRACT

JENSEN, DAVID WARREN. Derivations of a Prime Ring Which Satisfy a

Polynomial Identity. (Under the direction of JIANG LUH).

/ , Let j 1,2,3,4, and 5 be derivations of a prime ring R, and

S ' let Q(R) be the generalized ring of quotients of R. Assume m and n

are positive integers, C is the center of Q(R), and A is the unique

derivation of Q(R) satisfying IL .= Several identities involving
I 1 hl4 et -r -T"~R i I

the 's are studied and the followingresults are establishede (-__

1. if1 A2  n > 1, then

a) A1 - 0 if R is commutative and char R is sufficiently large.

b) A1 is algebraic if n - 3,4,5, or 6, and char R is sufficiently

large.

c) 2u-3 0 if a a E R such that X Oa  0 and A2a -0.
1) 1 1

d) X1 is algebraic if A1 (C) - 0, char R 0 0, and if

0 # a 6 R and 0 0 c 6 C such that A1a = ca.

2. If XIA2  0, then either A -0 or A k 0 where k < 4m-1.! ~ . = -0, wee < a

]•.n k 2 = 0 wh r k < 12 -
3. If AIA 2  O, then either A1 

= 0 or A2 . wherek 12n-9.

4. If X AM 0 and XIA - AA, then either A or A is nilpotent.
1 2 1 2 2 1 1 2

5. If A1A2 - A3A4  A5 , A 0 for j - 1,2,3, and 4, and char R 0 2,

then3 c 6 C such that

either a) A 1 cA3 and A 2 m c- A4

or b) A cX4 and A2 = c 1 x
336. If A1A2 - x 3 A4 and char R 0 2, then either X1 = 0 or X2 - 0.

121 2 2 k+1li
7. If AA A = 0 and neither A nor A is nilpotent, then is

22 22 2k+l +1n 2IA 1 0, 2 1 +

a derivation, A2A 2 A a nd
1 2 2 A1 n 1 2 - 1- - . . "



.if A A -2A 0, char R 2, and R has no zero divisors, then either
121

A or X2 is nilpotent.

Accessi-

NTIS

DTtCI

Av.

,,B",.D 1 S
**-*-4**% ** *.*~ .... %.. * i:> -: .- :



:.7 - T :,: j , - -. - - --+ -,,-: -;' ; ' "  - - - - - -- -- -- - - -;. . .. . . : .
AFIT/CI/NR 83-69D

AFIT RESEARCM ASSESSMENT

", The purpose of this questionnaire is to ascertain the value and/or contribution of research

accomplished by students or faculty of the Air Force Institute of Technology (ATC). It would be

"* greatly appreciated if you would complete the following questionnaire and return it to:

AFIT/NR
Wright-Patterson AFB OH 45433

RESEARCH TITLE: Derivations of a Prime Ring Which Satisfy a Polynomial Identity

AUTHOR: David Warren Jensen

RESEARCH ASSESSMENT QUESTIONS:

1. Did this research contribute to a current Air Force project?

( ) a. YES ( ) b. NO

2. Do you believe this research topic is significant enough that it would have been researched

(or contracted) by your organization or another agency if AFIT had not?

( ) a. YES ( ) b. NO

3. The benefits of AFIT research can often be expressed by the equivalent value that your

* "agency achieved/received by virtue of AFIT performing the research. Can you estimate what this

, research would have cost if it had been accomplished under contract or if it had been done in-house

* in terms of manpower and/or dollars?

( ) a. MAN-YEARS ( ) b. $

4. Often it is not possible to attach equivalent dollar values to research, although the

results of the research may, in fact, be important. Whether or not you were able to establish an

* equivalent value for this research (3. above), what is your estimate of its significance?

( ) a. HIGHLY ( ) b. SIGNIFICANT ( ) c. SLIGHTLY ( ) d. OF NO
SIGNIFICANT SIGNIFICANT SIGNIFICANCE

5. AFIT welcomes any further comments you may have on the above questions, or any additional

details concerning the current application, future potential, or other value of this research.

Please use the bottom part of this questionnaire for your statement(s).

.NAME GRADE POSITION

ORGANIZATION LOCATION

STATEMENT(s):

iV

.1'

d

4,

C * * -* . - U. " ' - "" " ' ""



David Warren Jensen

Derivations of a Prime Ring Which Satisfy

a Polynomial Identity

-. i Capt. USAF

1983

68 pages

Doctor of Philosophy

North Carolina State University

.46

'a.



ABSTRACT

JENSEN, DAVID WARREN. Derivations of a Prime Ring Which Satisfy a

Polynomial Identity. (Under the direction of JIANG LUH).

Let Ii, J - 1,2,3,4, and 5 be derivations of a prime ring R, and

let Q(R) be the generalized ring of quotients of R. Assume m and n

are positive integers, C is the center of Q(R), and A is the unique

derivation of Q(R) satisfying A JIR - Aj. Several identities involving

the A s are studied and the following results are established:

1. if A n A2, n > 1, then

a) A1 - 0 if R is commutative and char R is sufficiently large.

b) A1 is algebraic if n - 3,4,5, or 6, and char R is sufficiently

large.

c 2n-3 0 if g a 6 R such that 1a 0 and )2a 0.
1 1 1

d) A1 is algebraic if A1(C) - 0, char R - 0, and if.

0 0 a R and 0 0 c E C such that ,1
a  ca.

2. If AA - 0, then either A1 - 0 or A2  0 where k < 4m-1.
3. I A=0 hn ihrAk =0 or X2 = 0 where k < 12n-9.3. If AA -0 O then either AI k 2

1 2 ee 1 ~ or 2=Ohrk1n

4. If XnA 2M 0 and A = A2A1  then either A or A is nilpotent.

5. If A1A2 - 3A 4 - A5, x 0 for j - 1,2,3, and 4, and char R 0 2,

thena c E C such that

either a) A, x c3 and A 2 c 1 A

or b) Xi c 4 andA 2  c- 1a 3 "

6. If A1 x2 - A 3  A 4 and char R # 2, then either X 1 . 0 or X 2 0.

7. If A A A - 0 and neither A nor A is nilpotent, then 1 is

22 2 2 , a X2k+l x 0, V k E Z+ .
a1derivation, A2 -21 and2 1A 2  V

V' i" ' :' * ' '" " " " •." '. .: c:' : 12 , 21 ', 12,:, 1, .. " ,' .:.:: . ,L-?:-: .. . .. . .-• " ..



8. If A A = 0, char R 2, and R has no zero divisors, then either

A or A 2 is nilpotent.
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1. INTRODUCTION

During the past thirty years there have been several milestones

in the study of algebraic derivations in prime rings. In 1957,

Amitsur [1] proved a famous theorem: in a simple ring with unity, any

derivation X which satisfies a polynomial identity f(X) = 0 must be

inner. In 1978, Kharchenko [21] generalized the above result to prime

rings: a derivation satisfying a polynomial identity in a prime ring R

with characteristic zero may be extended to an inner derivation of the

generalized ring of quotients of R. Chung, Kovacs, and Luh [4] have

recently sharpened Kharchenko's result and answered several major

questions, including what type of minimal polynomial a derivation can
have.

The major results by Amitsur, Kharchenko, Chung, Kovacs, and Luh

tell us a great deal when a derivation X satisfies a polynomial

identity f(X)- 0. However, relatively little is known when more than

one derivation is involved, i.e., what can be said when derivations

A 1l, X2, ... 9 n of a prime ring R satisfy a polynomial identity of

the form f(XIX 2, ., Xn ) - 0? A general theory for this problem

appears to be beyond our current reach. The purpose of this report

is to establish a base of knowledge by investigating several specific

polynomials.

A natural starting point for the study of polynomial identities

of the form f(-l' X2 0 is a well-known result by Posner [26]:

if X, 6, and y are derivations of a 2-torsion free, prime ring R such

that ?.X - y, then either X -0 or a -0. It follows trivially that

* a .' .,,,. ' . 't " . . . , 
,

. ',', . . . . -o.. . ,, % . ° ' . - ., . . , - ,. -
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9 f(,6) X A2  6 - 0 implies X -0, and that f(X,6) = A6 = 0 implies

either X - 0 or 6 = 0. From these observations two logical questions

*1 arise: what can be said when f(X,6) = X n  - 0 for n > 1 (i.e., the

case where A and an iterate Xn are both derivations), and what can be

said when f(A,6) 6 m M 0 for nm E Z+I These two cases are studied

and several results given in Chapters 3 and 4. In Chapter 5 identities

involving more than two variables are considered. Here, among other

things,we extend Posner's result by determining what happens when

2 3= Y and A6 = y . In Chapter 6 we investigate the identities

A6" - 0 and X6 X - 0, and in Chapter 7 we make some concluding remarks.

Chapter 2 introduces the generalized ring of quotients Q(R) of a prime

ring R, the unique derivation A of Q which satisfies AIR X, and other

concepts which will be needed in the sequel. Throughout this paper Z

is the ring of integers, Z+ is the set of positive integers, and

m,n E Z. Also G, C, and F denote the center of R, the center of Q(R),

and the algebraic closure of C, respectively.

The major results of Chapters 3, 4, 5, and 6 are summarized below.

Chapter 3. Assuming R is a prime ring and A and n , n > 1, are

derivations of R:

1. If R is commutative and characteristic R is sufficiently large,

then A - 0.

2. If n - 3 and characteristic R 3, then A is algebraic and A3 . cA

for some c E C.

3. If n - 4 and characteristic R 2, then A is algebraic and

{PA, 3A9A4 *A 6 is linearly dependent over C.

4. If n -5 and characteristic R 5, then A is algebraic and X7 = cA

for some c 6 C.
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5. If n = 6 and characteristic R is sufficiently large, then A is

algebraic.

6. If 3 a E R such that Aa 0 0 and A 2a = 0, then A 2n - 3  0. Ifin

addition, characteristic R # 2, then An - 0 if n is odd and

n-l
A 0Oif nis even.

7. If A(C) nOcharacteristic R- 0, and 3 0 0 a E R and 0 0 c E C,

such that Aa - ca, then A is algebraic.

Chapter 4. Assuming R is a prime ring and A and 6 are derivations of R:

1. 1. If A6m  0, then either A 0 or 8 O, k < 4m - 1.
n k 62

2. If An6 - 0, then either k 0 or 20, k< 12n - 9.

3. If A n6 = 0 and Ad - 6, then either A is nilpoteat or 8 is

nilpotent.

Chapter 5. Assuming R is a prime ring, characteristic I R 2, and

A,6,y,e, and o are derivations of R:

" 1. If A,8,y,and c are nonzero and A6 - a = , then 3 c 6 C such that

either a) A - cy and 8 - c-1€

or b) A - cc and 6 c-1 Y.

32. If 6y-A - a, then either -0 or y O.

Chapter 6. Assuming R is a prime ring and A and 6 are derivations of R:

1. If A6A - 0 and neither A nor 6 is nilpotent, then A 2k +  is a

2 2 2 2 2k+ 1+
derivation, A2aa2  , and Ad , V k 0 Z+ .

2. If A 2X 0, characteristic RO 2, and R has no zero divisors, then

either A is nilpotent or 6 is nilpotent.

22.

% ,. .
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2. PRELIMINARIES

2.1 Definitions

A prime ring R is a ring with the property that for a,b E R,

if axb - 0 for all x E R, then either a - 0 or b - 0. Primitive rings,

integral domains, and simple rings with R2 0 0, are all examples of

prime rings. A ring R is called a semi-prime ring if for a E R, axa -0

for all x E R implies a - 0. It follows that every prime ring must be

semi-prime. However, the converse need not be true. (For example,

Z OD Z, the direct sum of two copies of Z, is semi-prime but not

prime.) A derivation of a ring R is an additive mapping A : R - R

satisfying X(xy) - Xxy + xAy for all x,y E R. A derivation X is called

an inner derivation if there exists an element a in R such that

Ax - ax - xa, for all x in R.

If R is a nonzero ring and there exists a positive integer n such

that na - 0, V a E R, we call the smallest such positive integer the

characteristic of R. If no such positive !vx iger exists, R is said to

have characteristic zero. If R is a prime ring then the characteristic
.4

of R is either zero or a prime number. We say a ring R is n-torsion

free if nx - 0 implies x - 0, V x E R. If R is n-torsion free then

characteristic R 0 n. If R is prime and characteristic R > n, then R

is m-torsion free, V m < n.

2.2 The Generalized Ring of Quotients of a Prime Ring

In Chapter 3, we will make extensive use of the notion of the

generalized ring of quotients of a prime ring R. Here we offer a brief

development of this notion, similar to the developments presented in

[4] and [16].

'I
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Given a prime ring R, let L denote the set of all nonzero, two-

sided ideals of R. Let Q(R) - {(U,f) IU E L and f r HomR(UR,RR)}, where

HomR(UR,RR) is the set of all right R-homomorphisms from UR into RR.

We define a relation " on Q(R) by (U,f) P- (Vg) iff f - g on a nonzero

ideal W C U r) V. Since R is prime it is trivial to show that It is

indeed an equivalence relation on Q-- Y. Denote by [U,f] the equiva-

lence class containing (U,f) and by Q(R), or Just Q, the set of equiva-

lence classes. Addition and multiplication are then defined by [U,f] +

[Vg] - [U A V, f + g] and [U,f] [V,g] - [VU, fg], where the product fg

is the composition of functions. With these operations it is a straight-

forward exercise to verify that Q is an associative ring. We call Q the

generalized ring of quotients of R.

A very important property of Q which follows from the definition

is the following:

If q E Q, q 0 0, then aa nonzero ideal U C R such that qU C R and

qU 0 0. (2.1)

Using this property we can show that the generalized ring of quotients

is itself a prime ring. Assume qlQq2 - 0 where ql and q2 are nonzero

elements of Q. Since ql 0 0 and q2 0 0, 3 nonzero ideals U1 and U2

such that q1U 1 0 0and qU2 0. Let U - U1U2 and note that U # 0

because R is prime. Then qlU 0 0 and q2U 0 0 since ql and q2 are

nonzero. However, qlQq2 - 0 implies ql(UR)q2 (U) - (qlU)R(q2U) - 0

and by the primeness of R we get either qlU - 0 or q2U -0. The con-

tradiction tells us that qlQq2 - 0 implies either ql - 0 or q2 - 0

and we conclude that Q is a prime ring. It is also easy to show that

'S 4 -S *S -- . -S . . S *?*** -
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the characteristic of R is equal to the characteristic of Q, and that

R is'isomorphically embedded in Q via the map a 0 [R, at], where aI

represents left multiplication by the element a.

If we let C represent the center of the generalized ring of quorients

Q, then it is obvious that C has a unity since [R, 1] is a unity for the

ring Q. Further we can prove that C is a field. Let c C C, c 0 0.

Using (2.1) we know there exists a nonzero ideal U C R such that cU A 0.

Moreover cU is itself an ideal in R and we can define h : cU - R by

h(cu) - u. Then h is a right R-homomorphism and by letting d - [cU,h]

we get dc - cd - 1 on U.

Besides being a field, C is especially nice in that it is

precisely the set of elements in Q which comute with all of R. To

prove this, start with w 6 Q, w # 0, and q E Q, qx - xq, V x E R.

Again by (2.1), w 0 0 implies Z a nonzero ideal U C R such that

wU C R and wU 0 0. Then for all u E U, (qw)u - q(wu) - (wu)q -w(uq)

- w(qu) - (wq)u and it follows that qw - wq. Therefore q E C and the

proof is completed.

We have noted that R and Q are both prime rings with the same

characteristic value and that R is isomorphically embedded in Q. In

addition C is a field and C - {q 6 Q1 qx - xq,V x 6 R}. With this

close relationshiop between R and Q one might hope that derivations of

R would extend nicely to all of Q. This is indeed the case and we have

the following powerful result: If X : R ) R is a derivation, then there

.'_ exists a unique extension A : Q o Q such that A is a derivation of Q

2'1
and AIR - X. Given [U,f] 6 Q, A is defined by A ([U,f]) = [U ,f 1,

where f'(u) - )(f(u)) - fC(u)). Note that U2 is used to insure

'(u) 6 U so that f(X(u)) makes sense. Also note f is an element of

-" 4

4.' ',''\ :,',...J ''' .,.-, -'''''""" "":,.- - "" . -""".-"""% -". -". . ' . . -"- " ""



u, 7
Hom (U,RR) since for any r G R, f (ur) = A(f(ur)) - f(X(ur))

- )(f(u))r + f(u)X(r) - f(X(u))r - f(u)X(r) - f (u)r. Proving A is

* a derivation of Q is a routine exercise. To see AJ - A, let x E R,
R

and use the definition of A to get A([R,xL]) ( , where

x(r) - A(xr) - xAr - (Ax)r - (Xx) r. Therefore A([R, xL]) =

[R 2( =x)] [R,(Xx)I]. To prove the uniqueness of A let q E Q, q # 0,

and assume A is not unique, say X - Al R and X = Al21, where A1 and A2

are derivations of Q. By (2.1), q 0 0 implies Z an ideal U C R, U Y 0,

such that qU C R and qU 0 0. Then AI(qu) A1qu + qA1U

= A2 (qu) = A2qu + qA2u implies (A1 - A2 )qu = 0, V u E U. It follows

that (A1 - A2)q - 0 and A1q = A2q.

A derivation A: R 0 R satisfies a polynomial identity over C if

a polynomial p(t) - a t + at 2  + antn, a 6 C, a 0 0, such

that p(X)x - (a + a1A + a2A
2 +...+ a nAn)x -0, V x C R. A derivation

which satisfies a polynomial identity over C is called algebraic over C.

As a final note, if the field C is not algebraically closed, let F

be the algebraic closure of C. As discussed in [11] and (24], we can

define S - RC + C, a closed pri-As algebra over C, and P - S Q c F. a

prime algebra over F. A derivation A of R can be extended uniquely

to P. We say A is algebraic over F if it satisfies a polynomial

identity with coefficients from F.

2.3 Propositions

We conclude this chapter with several propositions which will be

needed later. Theorem 2.9 is similar to Proposition 2.8 and may be of

some independent interest (3]. For easy reference, we repeat the

results by Posner and Kharchenko mentioned in the Introduction.

... , . ,r . ,r,, • .- o.-. , , .. - ...... J'. - -.. . ... . .* ...- X-- .,,-. *j. .\. .. - q . .
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Proposition 2.1

(Posner) (26]. If X and 6 are derivations of a prime ring R

with characteristic R 0 2, and if the composition X6 is also a

derivation of R, then either A - 0 or 6 - 0.

Proposition 2.2

(Kharchenko) [21]. A derivation satisfying a polynomial identity

in a prime ring R with characteristic zero can be uniquely extended to

an inner derivation of the generalized ring of quotients of R.

Proposition 2.3

[4] . A derivation A satisfying a polynomial identity in a prime

ring R with characteristic zero must satisfy a minimal polynomial of
n 0t n i n

the form *(x) - x Hl (x - c)i (x + c i) ,where the ci are mutually
i-l

distinct elements of F; n > ni, Vi; n is odd; and n > - for

some J 0 0.

, Proposition 2.4

[16] . Suppose aibi are nonzero elements in a prime ring R such

t
that I a x bi  0, for all x E R. Then the ai are linearly dependent

i-l

over C and the b are linearly dependent over C.

Proposition 2.5

- (7] . Let R be a 2-torsion free, semi-prime ring and X be a

derivation of R. If A is nilpotent then the index of nilpotency is an

odd number.

Proposition 2.6

(5] (12]. If R is a semi-prime ring and X is a derivation of R

such that (Ax) - 0 for fixed n 6 Z+ and for all x E R, then A - 0.

,* ,. .p,.* , .* *, I., ,, .,* ., . . . , .- . . . . .. . .. . . . . . .. . . . . . . - .. . . - . . .



* Proposition 2.7

[14]. Let R be a prime ring, characteristic R #2, and suppose

a,b e R are such that axb + bxa - 0, V x e R. Then either a - 0 or

b -0.

Proposition 2.8

[4] [8]. Let R be a prime ring with characteristic zero and W be

a nonzero ideal of R. Suppose A is an algebraic derivation of R such

that AW C W and f(A) W - (0). Then f(A)R - (0).

Theorem 2.9 Let R be a prime ring with characteristic zero and W be

4 a noncentral Lie ideal of R. Suppose A is a derivation of R such that

h -+
XnW - (0). Then X R- (0) for some h EZ

Proof: W is a Lie ideal if f W is an additive subgroup and

[u,X] -ux -xu 6W V uECW, x ER.

We know [A u,x] -0, V u r= W, x G R. Let j be the least such that

- [A'u,x] - 0, T u CE W, x r= R. Clearly J > 0 since W is noncentral.

Then

xAn u'x]-0 V u EW,x ER

)n A [nx (A[u,x]) x A [Au'X] - 0 V u CE W, x e R

X n+l 1 AX~l Xn (A[Au,x]) - n [A~][A 2u'X] - 0 V u E W, x 6E R

- ~ , A0l 2 x nAAux)-A[~~]- V u E W, x E R

[A -U,X ] - 0 V u r6W, x ER.

Let m be the least such that

[XAj 1U,AX X] - 0 V u W, x CER.

Notice that m >.l since j was chosen smallest.
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Replacing x by xy yields

i-l j-m i rn-i[X u, Amxy)] 1u I )x -x y] 0 V u EW,x,y ER.
i-O

Replacing x by Amx and y by !- ly yields

iJ1,2m m-1 x
xx ] - 0 V u E W,x,y R

X 2m x [Xj-lu, A!--ly] _ 0 V u E W,x,y E R. (2.2)

Replacing x by (zX2m - 1x) in (2.2) yields

2mzA2
m - lx[Aj - lu,A - ly] -0 V u E W,x,y,zE R.

Replacing x by (XzA 2 2x) in (2.2) yields

2m + lz2m - 2x[Aj - lu, Am- ly] - 0 V u E W,xy,z 6 R.

Replacing x by (A2zA2m-3x) in (2.2) yields

2m+2 zA2m -3x[ xJ-lu,A ly] - 0 V u E W,x,y,zE R.

Eventually we obtain

x4m- iz x m-x j - -u, y] . 0 V u E W,x,y,z E R.

By the primeness of R we may conclude A4m - 1- 0 and the theorem is

complete.



F, •
F-.

11

As encountered in the last proof, repeated use of the symbol V

becomes cumbersome when it is clear from the context that arbitrary

elements are involved. Therefore in subsequent proofs, where no

ambiguity exists, the repetitious use of V will be omitted.

I1

',

. .

,4.,

.4 , ~ ,, %. .'.'.l %, \ ' , .-. ' % '% ... . . -"- .- ... . . .. .- ... , - . .. . .. . - -. . . -
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3. DERIVATIONS SATISFYING f(A,6) - n - 6 - 0

Consider the case where A and an iterate An are both derivations

of a prime ring R. Proposition 2.1 tells us that if n - 2 and

characteristic R 0 2, then A - 0. For n > 2, Martindale and Miers [24]

have recently made several discoveries assuming X is an inner derivation.

In particular they have shown the following:

Proposition 3.1

If X and Xn are inner derivations of a prime ring R and character-

istic R is sufficiently large, then A is algebraic, and

1) if n is odd, then either An - 0 or the minimal

polynomial of X is semisimple.

2)if n is even, the n-1. 0.

- We say a polynomial f is semisimple if f is the product of distinct

irreducible linear factors over F. Note that if the minimal polynomial

of A is semisimple, Proposition 2.3 implies it must be of the form
t

*A(x) - x H (x-ci)(x+ci), ci e F.
i-1

In this chapter we study the case where A and An are both derivatons

of a prime ring R, without the restriction that X must be inner. We

begin by assuming R is comutative.

3.1 Commutative Rings

Lepta 3.2 Let A be a derivation of a commutative ring R, let m,nE Z+

m - n, and let N denote the natural numbers. If a a function c from
2 +
X N to Z such that V xlx 2, *..I x n R,i-Il

' , 7 % e : ,a . ,," ,, , . . . * . V' , * . 1' ,' , .,~ ' ,, , ** .. ' ,* .'. " . %-. ' , , . .
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kIk2+1 k_ +1 k +1

I c(klk 2 ,..,km)A 1 Xl. A x 2 ... k 1 _M1 m xm -0
(k1 + k2 +...+ km -n-nm)

M+l +
then Z a function d from X N to Z such that V xl,x 2 ,...,xm+I I R,

i-I

kl+1 k +l k +1 k +1
d(kl,k 2 ... ,kM+l) 1  X) x 2 .. m Xm A Xm+l 0.(k1+ k 2+...+ kM+l-n- 1-i)

Proof. Using commutativity, label the k so that k m 0. Replacing

xm by xMxm+l implies V XX 2,...,xmxm+ 1  R,

kl+l k +1 k+ 1  k +l
. c(kl,k 2 ,.,km) I x12 x2 ... A xiA m (XmXm+,).O

(k 1 + k 2 +...+ k m- n- m)

kl+l k +l k+1
c V (kl,k2 ' o,k m) A x I  2 X2 ... i xM 1

(kI + k 2 +..+ kin- n-M)

+1 k + + k+l k+lj 0 c c(klk 2 ,...,km ) X Xx x2 r n- 1 1

(k1 + k 2 +...+ ks- n- M)
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m., k m xk m+1- j X(k+)-ki i / o

j l~ m2+ xml)

k +i k +1 k+1
C(kl,k 2 ,.. " ,km)X 1 x 1 2 r -xm-i

(k 1 + k 2 +...+ k-n- m)

k k-i ( k+1\kjx~Im m 1) X jxr+1) =0.
+ j4o

Letting h k -i- yields

k+l k2 +1 k+l1

) 2 n-i

c- (krk .... k,-'++) N l x: A' x ... x x

(k I + k 2 +...+ kin1 + h+j n-m- )

\( h Xh+lx+x +l  -0.
h + 1 kin-l)

wed(klre 2 kk2 .. k ml,h ). A 1 x2 x2  x.1 x_ 1
(kI + k2 +...+ k 1l+h+j n n- m - 1)

. .(..+ x . + 1o
m l

where d(k19k22,...k m-1 h~j ) =C(k l' k 2,..,k m-11h +J+l) j + 1
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Theorem 3.3 If A and An , n > 1, are derivations of a commutative,

semi-prime ring R and characteristic R is sufficiently large, then X=0.

Proof. Ais a derivation implies Vx, y r R,

A n(xy) = ) x'y M Anxy + xny
i=O i

.

n-l n-2
I ( )X -i x i y I (n 1)X n-i-l xxi+ly

i=l i0 i+

I (J+l + 2 )AJ+I xAl+y = 0, where j = n-2-1.

J+i-n-2 +1

Applying the last lemma n-2 times we get MAxI Ax2  Ax =0,1' 2 ' n

VXl,X2 ,...,x n E R, where M E Z
+. If we let x - xI for i =

then M(Xx)n =0, V x E R. For characteristic R > M we have (x)n = 0,

V x F R. The proof is completed by using Proposition 2.6.

* Corollary 3.4 If A and An, n > 1, are derivations of a semi-prime

ring R with center G and characteristic R is sufficiently large, then

A(G) - 0.

Proof. It is trivial to show that G is also a prime ring and that any

" derivation of R is also a derivation of G. Therefore A and An are both

derivations of G and by Theorem 3.3 we may conclude that A(G) = 0.

"4,,

i.

_* •

'?' .''; ; ';;'': ::'._;:;: . .. . .-??-;2::.:-'-. ? : -:i: : -"-.._ -- ...--..- . -. .:-. :,/ :>i.,'
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3.2 General Rings

We now drop our assumptions that R is commutative and prime, and

present three minor but interesting results. We will see Lemma 3.5

again in Chapter 4. One should compare Lemmas 3.6 and 3.7 to Theorems

3.9 and 3.11, where the primeness of R is required.

Lemma 3.5 If X is a derivation of a ring R and X(XxAy) = 0 Vx,y E R,

2n+l +
then X is a derivation of R, V n E Z

Proof. Observe that X(XxAy) - 0, V x,y E R, implies Ah(AixAJy) = 0,

V x,y 6 R and V hi,j Z+ . We proceed by induction on n. Since

3 (xy) - A3xy + 3U2xy + 3X x 2y + xX3y - X3xy + 3A(XxXy) + xA3 y

x 3 xy + xX 3y, 3 is a derivation. Now assume X2n+l is a derivation

for n 1,2,...,k-1. Then

2k+l 2k+l ( 1 2k+l-ixi
A (xy) I i ~ ~~i~ y

i-O

x 2k+ xy + xX 2k+1y + 2k( 2k + i) x2k+l-i x iy

1-1

.k

2k+l 2k+ly ( 2k+1 2k+1-2i i i
xy + +i-1 )x (Ix Y)

x 2k+lxy + xX2k+ly.

Lemma 3.6 If X and X3 are derivations of a ring R, characteristic

2n+l +
R 0 3, then A n  is a derivation of R, V n 6 Z
Proof. If X3 is a derivation, then A3 (xy) - X3xy + 3X2x y +

3XxX2 y + x3y - X3xy + xX3y and we get 3 2x y + 3xA 2y - 3A(AxAy) - 0,

5% , , -" . .,, .... .. .. . . . -. . .. .
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V x,y e R. Since characteristic R 3, X(Xx~y) - 0 and the proof is

concluded by our last lemma.

Lemma 3.7 If X and X5 are derivations of a ring R, characteristic

R # 5, then X7 is a derivation of R.

Proof. x5 is a derivation implies V x,y G R,

5 5 - 5 5X5(xy) = I ( i )A5-x y =AxY + xX SyimO

5x 4xAy + lox3x 2y + lox23 By + 5xx4y 0

5X3 (Axzy) 5x3 2 y- 5X2xA3y = 0

5X3 (Ax~y) - 25(22y) , 0

xA3 (xy) -(X 2xX2y) - 0. (3.1)

X 7 is a derivation iff V x,y r R,
77 7 7- 1 77

A7 (xy) - I (i ) A 7 ixiy M X7xy + xATy

A 7 6xy + 21X5xA2y + 35A4xA3y + 35A 3xA4y + 21A2x 5y + 7AxA6y a 0

7X5 (Xx y) - 14 5xA2y - 35A 4xA3y - 35A 3xA4y - 14X 2xx5y M 0

7X 5(Axly) - 14X3 (X2xA2y) + 7X4xA3y + 7A3xA4y a 0

7N5(AxAy) - 14A3 (A2xA2y) + 7A(A 3xA3y) - 0. (3.2)

Since A5 is a derivation, (3.1) implies

[7 5(AxAy) - 73(A 2x2 y)] + [-7A 3(A 2x2 y) + 7A (X 3xA 3y)] - 0 + 0 = 0.

Therefore (3.2) is satisfied and X7 is a derivation.

' ' 0 -"....." ." ''":." . " " ' . ' " ."-. " *. " -- "" - '-?"'.
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3.3 Results for n 3, 4, 5, and 6.

Returning to prime rings, our next lemma is a powerful variation

of Proposition 2.4, giving us sufficient conditions for a derivation X

of a prime ring R to be algebraic. We will use it to obtain results

for f(X,6) - Xn _ 6 - 0, n -3,4,5 and 6.

Lemma 3.8 Let fl, f2,... ofm be functions of R into R, where R is

prime, and let y1 9 Y2 ' "'' Ym be nonzero elements of R such that

fl(x)zyl + f2 (x)zy2 +...+ f (x)zym M 0, V x, z E R. Then a

cI C2 , ..., cm ( C, not all zero, such that cl f + c2f 2 +...+ cm f r o0 .

Proof. Note that for m - 1, fl(x)zyl - 0, V x, z E R, and yl 0 0

implies fl " 0. Suppose the lemma is false and choose the least m.

We just noted that m > 2 and we proceed by defining ck : RYmR4RYkR,

k 1,2,...,m, by c( uiymVi) uiykvi. We first show ck is well

defined. Assuming UiYmVi - 0 implies [ fm(x)zuiymvi -0. Letting
i i

z - zui in our initial hypothesis yields f1 (x)zuiy1 f.. fm(x)zUiYm -0.

m-1
Therefore fm(x) zuiYm  - 1 f (x) zuiYj

m-1

I f (x)zuiYJVi - 0i J-1

" I f (x)z( u uY Vi  0.
£, l i

Since m was chosen to be least we must have uiYvi V 0, j-1,2,.. m-l.

Therefore ck is well defined. Also it is clear that ck is a right

V, : -' . . --...- v-",.",. .. .,. --,'-'-...,%,.,--' . . ., .- '- ' '- "- - "- "-
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R-homomorphism and [RY mR,c k Q(R). To see that c E C, let

[U,g] E Q(R) and consider ckg acting on URymR,

ckg(urlTr 2) M c [g(url)Yr 2] = g(url)Ykr2 = g(urlY r2) = gck(urlY r2) "

m
By hypothesis we have I f (x)zyj = 0. Picking r E R such that ymr 0 0,

m
we get I f (x)zy r - 0. Replacing zyj r by c (zymr) yields~j-l
m m ff ' (cZYmr = 0. By the primeness of R, f (c = 0.
fgxj f(xj-1 0

Theorem 3.9 If A and A are derivations of a prime ring R,

characteristic R 0 3, then A is algebraic and X3 = cA for some c E C.

Proof. A(xy) 3xy + A2xXy + 3XxX 2y + xA 3y = xy + x3y, Vx,y E R

2 23X xXy + 3XxX2y = 0

x - 2xy + X2y = 0. (3.3)

Replacing x by Xx in (3.3) yields A3xXy + X2X2y W 0.

Replacing x by xz yields X3xzXy + xX3zxy + X2 xz 2y + 2XxXzX2y +

~~xAzAy-=0

3X 22 2x2

Ix 3xzy + X2xzA2y + 2XxAzA2y M 0

Ix 3 xzky + X2xzx2y - 2XxX2zxy - 0. (3.4)

Replacing y by Ay in (3.3) yields X2xx2y + A ,x 3y M 0.
Replacing y by zy yields X2xx2zy + 2X2xAzXy + X2xzx2y + xx3zy +

Axzx3y a 0

up AxzX3y + X2xzx2y + 2XxAzXy 0

" xzA3y + A2xzx2y -2AxX2zAy - 0. (3.5)

*4 . ", , , , .'•. . •a - , , . , . . . " . . - • , - . - ,
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Subtracting (3.4) from (3.5) gives Xxz 3y - 3 xzly = 0. This is the

desired form for Lemma 3.8 and the proof is complete.

Theorem 3.10 If X and X4 are derivations of a prime ring R,

characteristic R 0 2, then X is algebraic and {X,X34,A6 x is

linearly dependent over C.

Proof. x 4(xy) 4 ,xy + 4X3xy + 6X2xx2y + 4XxX3yy + x4y x4xy + xX4y,

V x,y E R

" 4X3 xXy + 6 X2 xX2y + 4 xX3y _ 0

2X3xy + 32x22y + 2XxX3y M 0. (3.6)

Replacing x by Xx in (3.6) yields 2 4xAy + 33 x 2y + 2X2 x3y M 0.

Replacing x by xz yields 2 4xzly + 2x 4 zly + 3X 3xzx2 y + 9x2 xxzx2y +

91,x2 z2 y + 3x3 zX2 y + 2 2xzX3 y + 4AxXz 3y + 2x2 zx3y = 0

2X4xz~y + 3A3 xz2y + 2X2xz13y + 9lx 2zA 2y + 912 xz2 y

+ 4xkzA3y - 0 (3.7)

2A 4 xz~y + 3A 3xzX2 y + 2A 2xz3y + 9A2 XAzA2y - 6AxA 3zy

- 6Ax~z13y + 4XxXzA3y - 0

2, 4xzy + 3X3xzx2y + 2 32xzx3y + 9x2xzx2y - 6XxX3zXy

- 2AxAz13y - 0. (3.8)

Replacing y by Ay in (3.6) yields 2X3xx2y + 3A2xA3y + 21x14y w 0.

3 2 3 3 2 2 3
Replacing y by zy yields 21 xl zy + 41 xlzXy + 2X xzA y + 3X xx zy

+ 9x2xx2zXy + 9 xxzx2 y + 3 2xzx3 y + 2Xx 4zy + 2XxzX4y - 0

.L'' - , . . . . - -. ,,,-. .- . . - .. -. ..- - ' . .-.-. - . . . . .. . . . .

% , ' " ' ' J " / " - . - , . . . . . . . . . . , , . . . -. -. - .-, ; . . . : . . . . . . .. ..
q. 

; . . . . , . . . ;
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2AxzA4y + 2X3xzA2y + 3X2xzA3y + 9X2x)zA2y + 9x2xA2 zXy

+ 4X3xXzXy - 0 (3.9)

2AxzA4y + 2A3xzA2y + 3A2xzA3y + 9xAzA2y - 6AxA3zAy

-6A3xAzAy + 4A3xAzAy - 0

2AxzA4y + 2A3xzA2y + 3A2xzA3y + 9xAzA2y - 6AxA3zAy

- 2A3xAzAy - 0. (3.10)

Subtracting (3.10) from (3.8) implies 2X4xzAy - 2AxzA 4y + A 3xzA2 y

- 2xz 3 y - 2Xx~zA3y + 2X3xzxy - 0.

Replacing x by Ax and y by Ay yields 2X 5xzx2 y - 2 xzX5 y + X4 xzA 3y

x 3 zA4y - 2 xzX4y + 2X4xzx2y 0

OX5xzX2 y - lOx 2xzx5 y + 5X 4xzx3 y - 5X 3xzx 4y - lOx2 xz4 y

+ lOX4 XXZ2y a 0. (3.11)

Replacing x by Ax in (3.7) yields 2A 5xzXy + 3 4xzx2 y + 2 3xzx3 y

+ 9x3 XAZ 2y + 9A2 xx2 z) 2 y + 4X2 xzX3y - 0.

Replacing y by Xy in (3.9) yields 2XxzX5 y + 2 3xzx 3y + 3X 2xz4 y

+ 9AXx~zx3y + 9x2x 2zx2y + 4X3xzx2y - 0.

Subtracting the last equation from the one preceeding it we get

2A xz~y - 2Xxz 5y + 3 4xzx2 y - 3X2 xzx4 y + 5A 3xzA2 y

- 52 xzx3y = 0.

Taking X of both sides implies 2X 6xz~y + 2 5xzA 2y - 2 2xz5 y

-2XxzX6y + 3X5xzA2y + 3A4xzA 3y - 3X3xzx4y -3X2xzx5y + 5X4xzx2y

+ 5X 3 z 3y 5 3xz 3y 5 2xz 4y 0

I.I
Ii

. -. - ,. .. . .. . .. .. . . , . - ,, , ,- .- '.: . . ., . . .< , . . .-. - . .. , . . . . . . .- , . . . ,.. . .,,, . . ., -. -.-. - . . . .. . . . . . a . .. ... . .. . ..-.. . . - , . - - . . . . ...-
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2A 6 xzAy + 5X5xzX2y + 3A 4xzA 3y - 3A3xz 4 - 5x2 xzx 5y - 2 6xz6y

y 5Xy 4z 2AxzA y X2xX4
+ 5 4xz 2  - 5 2 x3 42

4A6xzy + loA5xzA2 y + 6A4xzA3y - 6A3xzX4y - lOx 2xzA5y

- 6 y + lox4 xzX2y - 1002xxzx4y =. (3.12)

Subtracting (3.11) from (3.12) implies 4 6xzXy + X4xzX3y - X3xzx 4y

- 4Axz 6y - 0. Now apply Lemma 3.8.

Theorem 3.11 If A and X5 are derivations of a prime ring R,

characteristic R 0 5, then X is algebraic and X7 - cX for some c e C.

Proof. X5 (xy) - I ( I )X 5 -xXy = ASxy + xASy, V x,y e R
i-o

5A4xXy + 10A3xX2y + l0x2xX3y + 5X 4y 0

4x4y + 2A3xx2y + 2X2x 3y + AxX4y = O. (3.13)

Replacing x by Xx in (3.13) yields X5xky + 2X4xA2y + 23x33y

+A 2X4y - 0.

Replacing x by xz yields X xzAy + xS z~y + 2X 4xzX2 y + 8A 3xXz2 y

+ 12A x z2 2y + 8x 3zA 2y + 2x4 zx2 y + 2A 3xzx3 y + 6A x z3 y

+ 6x2 zA 3y + 2xA3zA3y + 2 xzA 4y + 2Xx~zA y + XX z y 0

x 5 xz~y + 2 4xzx2 y + 2 3xzA 3y + X2 xzX4 y + 2Ax~zA4y

+ 6 2xAzA 3y + 8A3xxzA2y + 6xX2zx3y + 12 2x22 2 y

3+ 8XxX3xX2y M O. (3.14)
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SX 5xzy + 2X 4xz 2y + 2 3 xzx 3y + X2xzx 4y + 2XxzX 4y

+ 6A 2xAz 3y + 8X3:xz 2y + 6XxX2 z3y + 12X 2xX2 zx2 y

- 4AxX 4zXy - 8XxX2z)x3y - 4XxXzX4y - 0

. XSxz~y + 2X4xzX 2y + 2X3xzX3y + X2xzx4y - 2XxAzX4y + 6X x2zX 3y

+ 8X3xAzX 2y - 2XxX2zX3y + 12X 2xx2zk2y - 4xX4zXy - 0. (3.15)

Replacing y by Xy in (3.13) yields X4xX2y + 2X33xA3y + 2X2xx4y + Xxx5y -O.

Replacing y by zy yields X 4xA 2zy + 2X4xXzXy + X4 xzX 2y + 2X 3xX 3zy

" 6X3xX2zXy + 6X3xxzA2 y + 2X3xz 3y + 2X2xx 4zy + 8X2xA3zXy

+ 12A 2xX2zA2y + 8X2xxzA 3y + 2X2xzx4y + XxX5zy + xxzx 5y M 0

Axzx5y + X4xzA2y + 2X3xzk3y + 2X2xzx4y + 2X4xXzy + 6X3xAzx2y

+ 8X2Xzx3y + 6X3 x2zXy + 122xX2zx2y + 8X2xA3zXy - 0 (3.16)

so xxzy 5 x y 2+ 23xzx3y + 2)2xzx4y + 2X4xXzXy + 6X 3xzx2y

+ 8X2xz y + 6A 3x2zXy + 122 xx2 zx 2y - 4)LxX 4z)y - 8X 3xX 2zXy

- 4424xXzy - 0

AxzAxy + A4xzA2y + 2A3xz3y + 2A 2xzx4y - 2X4xzy + 63xkz)2 y

+ 812xAz3 y - 23 x 2zAy + 12A2 xA2z2y -4XxX4z y - 0. (3.17)

Subtracting (3.17) from (3.15) implies X5xzxy - XxzX5y + A4xzx2y

x 2xzA 4y - 2AxAzX 4y + 2X 4xXzy - 2~ xxzA 3y + 2X3x )zx 2y - 2Xx2 zA3 y

+ 2A3 2x2Y - o-
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Replacing x by Ax and y by Ay yields X6xzA2y - X2xzX6y + X xzx 3y

3 5 2 5 5 2 A4 4
-_ xzk y - 2X z)5y + 2X5xzx2y - 2X xkz) y + 2X xxz3 y

22 2 42 2
-2 xA zA y + 2A xA2 z y = 0

3A6xzA 2y - 3A2xzA6y + 3A5xzA3y - 3A3xzA5y - 6A2xxzA5y + 6A5xAzA2y

3 4 4 3 2 24 42 2- 6X xAzA y + 6A4xAzA3y - 6A xA zA y + 6A xA zA y = 0. (3.18)

Replacing x by Ax in (3.14) yields X6xzAy + 2A5xzA 2y + 2A4xzA3y

A X3xzA4y + 2AxAz 4y + 6 3xAzA 3y + 8A 4xAzA2y + 6A2xA2zA3y

S12AX3 A2 zA2y +8AX2 3 2y0.

Replacing y by Ay in (3.16) yields Axz 6y + 4xz) 3y + 2A xz4 y

2 5 4 2 3 3 2 4 32 2+ 2A xzx y + 2A xAzA y + 6A xxzA y + 8A xAz; y + 6AxA2 z2 y

+ 12A 2xA 2zA 3y + 8 2xA3 z2y a 0.

Subtracting the last equation from the one preceding it we get

A6xzy - Axz 6y + 2A5xzA 2y - 2A2xzA5y + A4xzA 3y - A3xzA4y

- 6A 2xAzA4y + 6AxAzA 6AkAx 2 y+ 6 x 3y+6A 3xA 2zAy = 0.

Taking A of both sides implies A7xzAy + A6xzA2y - 62xzx6y - XxzX7y

+ 2A6xzA2y + 2AxzA3y - 2A3xzA5y -2A2xzA6y + A5xzA3y + A4xzA4y

- xA4 xz 3 X 5 y X3 xk4 y X2 xxx5 y X5 xx2-AxzA y -A AxzA y - 6A xAzA y - 6A xAzA y + 6A xAzA y

+ 6A4xAzA3y - 6A3xA2 zA3y - 6A2xA2zA4y + 6A4xA2zA2y + 6A3xA2zA 3y = 0

X7xzAy + 3A 6xzA 2y + 3A xzA 3y - 3A 3xzA 5y - 3A 2xzA 6y - Axz7 y

6A3 Xx4 y X2 XA5 y X5 xx2 y X4 xx3 y A2 x2 x4
- 6A xAzA y - 6A xAzA y + 6A xAzA y + 6A xAzA y - 6A xA zA y

+ 64x ZA 2y - . (3.19)

v..- .. . - . ...- '.-.... .. .........-.. . -. . --I , I, S l~,,,'_1, , ,l, L 'th, =, ..:,-.: ., "A S ' t , ,, 4: " _ , . * . " ,*
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7 7
Subtracting (3.18) from (3.19) implies A xzXy - XxzA y = 0.

Again apply Leuna 3.8 and the theorem is complete.

In Theorems 3.9, 3.10, and 3.11 we assumed that X and X n were

-" derivations of a prime ring R for n - 3,4, and 5,respectively. For

n - 6 we will need the following special lemma.

Lemma 3.12 Let A be a derivation of a ring R. Assume V x,y,z E R,

3 d, ci E Z \ (01 such that d(An xzx n+2y - Xn+2x zny)

t ai bi  bi  ai
+ I ci(X xzX y - A xzX y) - 0, (3.20)

- i- 1

where n > 2, ai,bi 6 Z 
+ , ai distinct, ai < bi, ai + bi = 2n + 3, and

a1  1. Also assume V x,y,z 6 R, 3 ci e Z\ {01 such that

o a1  b b ai t 1 a 1  b b aici( ai xzA oiy - XboixzXaoiy) + IiCi(Xalixxzxbliy- lixzXaliy)

tk bki bkixk aki

+0.4+ 1y ki - A kxkzA y) - 0 (3.21)

where aii , b 6 Z+, aji distinct for fixed J, ai < bji,

aji + bji = m - j for some fixed m6 Z+, m > k + 3, and at least one

aki < n. Then 3 ci 6 Z \{01 and ai, b E such that V x,y,z E R,
* * * * *
t *( b b1  ai
Sc xzX y - X xzX y) - 0.
11

Proof. Assume akh - min {ak} and let n - akh I > O.

Replacing x by Atx and y by A Iy in (3.21) yields

L MM .
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k a b ba

ii

k c.= (A JixAJz jy - .AbjxXz x jy) = ,(3.21')

tf I

where aji aji +L and bji = bj+ £, V iij. Therefore aui, bi > 
2 ,

I I

V i,J, and aki ' bki > n, V i, except akh = n

Case 1: If bk - ah = bkh - n = 1, then tk 1 1. Therefore (3.21')

becomes

k -l J a .__ X j x j , a0 J-Oi-l C zX 0 y) + Ckl(XnxXkzXn+ly

- An+l xk zAn) 0.

Taking X of both sides implies

t I I I I IJ0O i l c i j i A( Ji Xj+lzA y + XA ,xAjzA

f I IIII
b +1 a b a b a +1

-AJi x"Jlz Jy - A jixAj+lz aiyA _ X jAixiz Ji y)

+ Ckl(Xn+ix k zn+ly + Xnxk+lzn+ly + knxXk n+2y

- An+2xxkz ny - n+l xxk+1 Any - Xn+l xk zn+ly) - 0
k-l t-ia+ ab+

I (I aji+l xjz bjiy JixAjzbii+ly bji+lxAjz ajiy

J-O i- j i

II

X A xjza ) + Ckl (nxXk zX n+2y - n+2xXk zXny) = 0.

Now substitute k-lz for z in (3.20) and use the resulting equation

(with the coefficients appropriately adjusted) to replace the term

involving A kz in the last equation by terms involving A k-lz.
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Case 2: If bkh -ah bkh 2, then t 1. Therefore (3.21')

becomes

pkl '1 a t - bj ac;' ji x JiixxJzx jy _ xjx ~aiiy)

+ ckl(xxk zxn+2y X n+2 xxkzkny) .

As in Case 1, use (3.20) to replace the last term with terms involving

A k-iz .

Case 3: If b - akh- b - n = r > 2, then define aki ' Ski,' 1 h,

and b k- b , i + h, and use (3.20) to replace akh with akhfakh + 2

and b with b - b - 2. We may do this since (3.20) implies
.~ibkh kh khi

ak b a. +2 kb -2
(chd)A akhXk z' khy = Ch [dA kh+2x ZA kh y _

t c ai k b i+r-2 bi k-1 a i+r-2
ci(A xA -zy - A x - zA x)]i-i

and ,
(d)bkh k b -2 k akh+ 2

,, kCkh Y+
(chd zX y = C k[dX [I xzAX y

t ai+r-2 k-i bi bi+r-2 k-i ai
I ci( xx z y- X xX zA y)].~i

Notice that in all three cases we must introduce a A z term

of the form c(AxA k-lzA by - A bxA k-lzAy). Moreover this term does not

k-i
cancel with any other term involving A z since aji >. 2 V ij. If

It II

we are dealing with case three, note that we now have a b > n + 1,

V i. We continue using (3.20) to eliminate expressions with kz.

...'v .'-' .' .* .: ,..,.-"".* -. ." '''+. . "-+ .., ."+'• .* +'... ."-,,..... . . .''.
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Since a.t, bki > n + 1, V i, as we eliminate an expression involving

i k k-

Akz, we can only get expressions involving A k-z of the form

c(AaxAk-lzAby - Xb xk-l zay) where a, b > 2. The conclusion is that

after getting rid of all A kz terms, there must still be a A k-z term

of the form c(AxA k-zA by - X bxA k-zAy). We now start the whole

process over, eliminating all terms with A k-z. Eventually we must

arrive at the desired conclusion.

6Theorem 3.13 If A and A are derivations of a prime ring R and

characteristic R is sufficiently large, then A is algebraic.

A6  6 6 6-i
Proof. (xy i ) Ai xy M A6xy + x X y, V x, y E R,

i-O

6XS xAy + 154 XX2 y + 20X 3x 3y + 15X2 XA 4y + 6xk y M 0. (3.22)

Replacing x by Ax in (3.22) yields 6A6xAy + 15A 5xA2y + 20A4xA3y

+ 15A 3xA 4y + 6A 2xA y W 0.

Replacing x by xz yields 6X6xz~y + 6xX6 zy + 15A 5xzA 2y + 75A 4xkzA2 y

32 4 24 324 2 5 2 5

" 150Ax XzX y + 150X xx zX y + 75XxX zX y + 15xX zX y + 20X xzX y

+ 80A xAzA y + 120AxA zA y + 80xA zA y + 20x zA y + 15A xz y

+ 45xXzA 4y + 45Xx2zX4y + 15xX3zA4y + 6X2xzX5y + 12XxXz5y

" 6xX zX 5- 0
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X 6 6xzXy + 15 5 xz 2 y + 20X 4xzx3y + 15X 3xzx 4y + 6X 2xzX 5y

"+ 75X 4 xzx2 y + 150X3x2z 2 y + 150z2 X 3zX2y + 75XxX 4zX 2y + 80X 3 Xz3y

- 30XxzX )5 y

S+ 6 xzAy + x y + 2X 4xzx3y + 5 3xzA4y + 6X2 xzx5y

+ 75X 4 X)Z)L 2y + 15OX 3 xx2 z 2 y + 150;k2 xx3zx 2y - 30XxX 5 zXy + 80 xz

+ 12A 2X 2 zx 3y - 2XxA 3z3y + 45A2xxzA4y - 24

- 18-x~zX5y = 0. (3.24)

52_ 343 345

Replacing y by Xy in (3.22) yields 6X 5XX y + 15X 4xxA y + 20X 3xx4 y

+ 15X 2 xx5y + 6XxX 6y - 0.

Replacing y by zy yields 6X xxA zy + 12X xXzXy + 6X xzx y

+ 15X 4x zy + 454 xx zX)y + 45X xxzX y + 15X 4xzx y + 20X x) zy

+ 80X xx3 z~y + 120X xx2 zx y + 80X 3xzx3 y + 20X 3 xzx y + 15X 2xx5 zy

+ 75x 24zXy + 150X 2x 3 zA2y + 150X 2xx2 zx3y + 0 2x y + 5X 2xzx5y

+ 6)x zy + 6Xxz6y - 0
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. 6 xxzX 2 y + 15, 4 xz x3 y + 20 3xz X4y + 15 X2 xzX 5 y + 6 XxzX 6 y

+ 12A5 xkzXy + 45X4xx2z y + 45X4 x z2y + 8O 3xx 3 zXy + 120X3xx2ZX 2 y

+ 80X3 xxzX 3y + 75X 2x zXy + 150X xx3 zx 2y + 150X 2 zA3 y

+ 75X xxzx4y = 0. (3.25)

By (3.22) 75 2 x 4 zy 30XxX 5 ZXy -0x 3 3OOXxx3 zXy - 75X4 xx 2 zXy

- 30X5 x zXXy

S6A 5xz 2 y + 15A4 xzX3y + 20X3 xzX4y + 15X2xzx 5 y + 6XxzX 6y

_18 5 xXzXy - 30X4 xx2 zXy + 45X4 x~z2y - 20A3xA3zXy + 120X3 x) 2 zx 2 y

" 80xAz 3 y - 30XxX zAy + 150X 2 zX 2y + 150X 2zx3 y

S+75X2xxzX4y = 0. (3.26)

Subtracting (3.26) from (3.24) implies 6X6xzxy + 9x 5 xzx 2 y

X+ 54.x 3y - 5X3xzx 4y - 9x2xzX5y - 6XxzX6y + 30X4xxzk2y

" + 30 zX 2zA2y 30X 2 z 3y - 20XxX 3zx 3y + 20X x3 zXy

- 30A2xXzAY - 30AxA2zA4 y + 30A 4xA zAY - 18xxzx y + 18X 5XzXy - 0.

Replacing x by Xx and y by Xy and multiplying by 7 yields

42X7xzx2y + 636xzx3y + 35X5xzx 4y - 35A4xz5y - 63X3xzx6y

- 42X 2xzx 7y + 210A5 xxzx 3y + 210X xx2 zx 3y - 210X xx2 zx4 y

2 34 l4 ~ 3z 2 2O 3xz 5y 22 5- 140X xx zx y + 140X x zx y - 210AxAzy - 210x xx zx y

5lO 2X 2~ 2 l2 z 6y +26 6  2+ 210 x~x zX2y - 126Xxx~zxxy + 126X xxzx y 0 O. (3.27)

Replacing x by Xx in (3.23) yields 6X7xzXy + 15X 6xz 2 y + 20X5xzx3y



V*O

31

" 15 4xzx 4 y + 6X 3xzx 5y + 755kx2y + 150X 4xA 2zA 2y + 150A3xx3zx2y

" 75)2x4zx2y + 80X4 xxzk3y + 120X3xX Z3 y + 80X2xA3zx3y

+ 45A 3xXzx4y + 45 2X 2 X 4y + 12X 2 zxx5 y = 0.

Replacing y by Xy in (3.23) yields 6X5xzx3y + 15X 4xzx4y + 20X 3xzA 5y

" 15X2xzx6y + 6XxzX y + 12X 5xXzX 2y + 45 4xX2zA2y + 45A 4xxzx3 y

+ 80X 3xx3zX2y + 120X 3xX2zx3y + 80X 3xXz,4y + 75X 2xX4zX2y + 150X2 3 zx3y

+ 150X 2xx2zX4y + 75X 2xXzX 5y = 0.

Subtracting the last equation from the one preceding it we get

6X 7xz~y + 15A 6xzX 2y + 14X5xzx 3y - 14X 3xzx5y - 15 2xzX 6y - 6XxzA7y

+ 63X 5xXz?2 y + 105X4xX2zX2y + 70X 3xX3zX2 y + 35X4 xXzX3y

- 70X 2xx 3zx3y - 35X 3xXzX 4y - 105X 2xX2zX4y - 63X 2xXzk5y = 0.

Taking A of both sides implies 6X8xzXy + 6A 7 xzx 2 y + 15X7 xzX2y

+ 15X 6xz 3y + 14A 6xzx 3y + 14X 5xzx 4y - 14X 4xzA5y - 14X 3xzx6y

15A 3xz 6y - 15X2xzx7y - 6)2xzx 7y - 6Xxz8y+63X 6xxzX2y

+ 63A5xxz 3y + 1055xx 2z)2 y + 105X 4 x 2zA 3y + 70X4 xX3 zx 2 y

+ 70X 3x 3zA3y + 35 5xzA3y + 35X4xxz 4y - 70X 3 xX3zx3y -70X 2xX3zX4y

- 35A 4xxxz4y - 35A 3xxz 5y - 105X 3xX2zx4y - 105 2xx2zx5y

- 63A 3xxzx 5y - 63X 2xxzx 6y - 0.

Combining terms and multiplying by 2 we get 12X8xz~y + 42; 7xzx 2y
+ 58 6xz 3 y + 28X 5 4y - 28 4  y - - 42 2xzx7 v

S • * - . * - . * ,° .. -. ° " o, ° " .s . -' -. . .- -- ,° . o° t ° - .s .. -- -. -, . °- ",- ,,- - - • ° -, ~ ,o -°
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12XxzX 8y + 126A 6 xkzA2y + 196A5 x3y + 2105xX2zx2y

+ 210A4 x 2z 3y + 140A 4xA3zA2y - 1402 x3 z 4y - 1963 xxz5 y

- 210A 3xx2zA4y - 21O 2xA2z 5y - 126A2 xkz 6y - 0. (3.28)

Subtracting (3.27) from (3.28) implies 12X 8xzky - 5X 6xzk 3y

- 7X5xzX4y + 7X4xz 5y + 5x3xzA6y - 123xz68y - 14X5xzx3y

+ 14k3xkzA 5y M 0.

This equation and (3.28) satisfy the hypotheses of Lemma 3.12.

Therefore aci E Z \{0} and ai, bi E Z such that

• * * * *

t * ai bi  bi  ai
i ci (X xzk y - X xz iy) = O.

By Lemma 3.8 we conclude that A is algebraic.

3.4 Results for Arbitrary n Z+

The last two theorems of this chapter concern the situation

where A and An are derivations of a prime ring R for general n E Z+ .

Here and in Chapters 4 and 5 we will use the following simple but

versatile lemma.

Lemma 3.14 Assume X is a derivation of a prime ring R and a

0 0 a C R such that a(XnR) - 0 or (n R)a - 0. Then A 2n-1= 0.

Proof. Assuming a(AnR) - 0 and x, y E R, we have aXn(xy) = 0

n na(n-
a ai )Aixn-iy) 0 (3.29)

i-0

I " ' " " ' " _., ' . . _ " ' ' ' ' ' - , " . . ' ' _ ,' ' ' ~ ' ' ' ' , . . ' -, " " , ",C , " - " - - " .
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n-i

Replacing x by A x yields

aX n1xX ny 0 (3.30)

n-2
Replacing x by Ax and y by Ay in (3.29) and using (3.30) yields

x 2xAn- +ly = 0 (3.31)

Replacing x by and y by Xy in (3.29) and using (3.30) and
[:x 'and-yxby in

(3.31) yields

aAn-3xAn+2y = 0

Continuing this process we eventually obtain axX 2n - 1y 0. Since

(P this is true V x, y E R, by the primeness of R we conclude that

A 2n-i . 0. Similarly, if 0 0 a E R and (XnR)a = 0 then A2 n- 1 = 0.rn
Theorem 3.15 If A and A are derivations of a prime ring R and 3

a E R such that Aa 0 0 and A a 0, then A2n- 3 -0 . If in addition

characteristic R 0 2, then An -0 if n is odd and An- = 0 if n is

even.

Proof. An is a derivation implies Xn(xy) - Anxy + xxny

n n-i y
- = i) x y, V xy E R.

n- n

Therefore A ( ) xAxy - O, V x,y E R.Vi- I i

Letting y - a implies Axn-1xa - 0, V x 6 R (3.32)

Letting x - a implies AaAn- y - 0, V y G R (3.33)

..
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In either case, A - 0 by Lena 3.14. If characteristic R # 2,

then by Posner's Proposition 3.1, (Xn)2 . 0 . An = 0. Proposition 2.5

says the index of nilpotency must be an odd number and we have

An-i . 0 if n is even. If characteristic R - 0, then an alternative

proof is available by noting that (3.32) and (3.33) together imply

2n-3 2n-3. (R~aR) - 0. Therefore by Proposition 2.8, A - 0.

Theorem 3.16 Assume A and An are derivations of a prime ring R,

A annihilates C, and characteristic R - 0. If 3 0 0 a E R and

0 0 clE C such that Aa - ca, then A is algebraic.

4 Proof. An is a derivation implies n ( n ) AniXxi - 0, V x,y E R.ii

In-i -
Letting x - a and using A(C) - 0 implies a I ( i ) cn-iX y -0,

V yER.
n-i

Letting y = a and using A(C) - 0 implies n ) cn-i Xi)x]a.0,
i-i i

V x r= R.

n-i t ni
Assume ( ) = A (A - ci) , where the ci are mutually

i-i i-l

distinct elements of F. Then(II - ci) x) a - 0

(a - VxeR.,.0

* t n
iSince nI (A - ci) , J - 1,2, ..., t, are relatively prime as

i-i,ioj

polynomials of A, 3 polynomials flf 2'" ft such that

,:' s,¢. polynmi als. " 1'" 2-"','''- . , . ', -... .- '' "-: . . - ...,"" .''''-'''.... - .''''. '''
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t ni t n
1 fl(X) (A- ci ) + f2 () n (A- ci )

i=2

.t- n
f() (A - c )"- i-1

If we define R c fx E R j[(A - c1 )mx] a 0 for some ml and

t
S {xR ja(- c) m x= 0 for some ml, then R R and

cj i iC

t t t
R - i c . Consider RaR- ( a( I c). For all z E

i-liJli i-l j

+ - 2Nij
and for all w 4c N ij Z such that (X - (ci + cj + c)) (zaw)

- 2Nj 2Nij 2N i-k k
" ( ) (A - c ) z a (A - cj) w 0. Therefore!k-0

t 2N
(A (ci + cj + c)) (RaR) = 0.

By Proposition 2.8, A is algebraic.

.

'1:

4. - , - . .. . - .. , - .. , .. ,. , . ; , , . . . , , .. . . : , i,. - , ,. , . . , , . , . . ... , . , . . . . .
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4. DERIVATIONS SATISFYING f(X,6) = An6m = 0

Let X and 8 be derivations of a prime ring R. In this chapter

we investigate what can be said when An6m -0 for n,m E Z+ . If

characteristic R ' 2, we know by Posner's Proposition 2.1 that

X6 - 0 implies A 0 or 8 - 0. Without the characteristic restriction

we can still say the following:

2
Lemma 4.1 If A6 - 0, then either A - 0 or 6 2  0.

Proof. For any.x,y E R, we have X6(xy) - Xx6y + 6x~y - 0.

Replacing x by 8x we get 8 xAy - 0. Now use Lemma 3.14 to obtain

2
either A - 0 or 6 .0.

The distinction between Posner's result and Lemma 4.1 is made

clear by a simple example. Consider the 2 x 2 matrix ring over the

Galois field GF(2 2 ) = {0,,w 2), with A and 6 defined by

* A~X()~[0 l.~n 6(X)~[ w)9 ,VX 6(GF (2)2
2x 2

2
The characteristic of GF(2 ) - 2 and we have A6 - 0, A 0 0, 6 0 0,

'.4 2
and 6 = 0.

Given X8 - 0, Lemma 4.1 tells us that while we cannot insure

[t. either A or 6 is identically zero, we do know at least one of them is

nilpotent. This leads us to conjecture that V n,m E Z+ , Xn=m = 0

implies either A is nilpotent or 8 is nilpotent. We show that if

n - 1 or m - 1, or if X6 -dA, then this is indeed the case.

4S
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4.1 For n - 1 or m-

Theorem 4.2 If x6m - 0, then either A =0 or 6r -0 where r < 4m-1

Proof. Proceeding by induction, Lemma 4.1 implies that the result

is true for m - 1. Assume the statement is true for m = 1,2,...,k-l.

If 6 k = 0, then X& k(xy) - 0, V xy E R.

N ( k 6k-ix6i) -0.

ii=o

Replacing x by 6k-lx and y by 6k  yields A(6 k-lx6 2ky) - 0

X6 k-lx 62ky + 6k-lxX6
2ky = 0

AS k-1x62k = 0.

Applying Lemma 3.14 gives the desired conclusion.

, 62 Ar

Theorem 4.3 If X n - 0, then either 6 - 0 or A - 0 where r< l2n-9.

Proof. We know that the derivations of R from a Lie ring under

commutation [20]. Therefore [6,X] - 6X-A is a derivation

S[6xA-A6,A] - 6A 2 - 2A6A + X2 is a derivation

6A [ 2 _ 2X6X+ X2 6X] -= 3 - 3SA2 + 32 6x-3 6 is

a derivation. Continuing we get

2n-1 2n-i i 2n-l-i

( i ) (- l ) i A 6x is a derivation.
i=O
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Supressing the coefficients and using An = 0 we get

6x2n-1 + A6x 2n-2 +..+ n-i&n is a derivation.

Then applying Lemi 4.1 to ( 0 2n-1 + x6x 2n-2 +..,+ xn-i 6 n )6 0

we have 62 - 0 or

2n-1l ~ 2n-2 n-i 6 n -0. (4.1)xn1+ A6A +...+ A 6

2 n-in-i 2n-i
If 6 2 0, then we premultiply (4.1) by An- to get A 6x 2 0.

Premultiplying (4.1) by An-2 it follows that

xn-2 ax2n-1 + xn-16
2n-2 O

(An-26 2n-1 + n-16 2n-2)X 0

x n-2 a2n 0.

Premultiplying (4.1) by n-3 it follows that

x n-3 A2n-1 + xn-2 2n-2 + xn-i6 2n-3

(An-3 6A2n-1 + An- 2 ax2n-2 + n-1 6x
2n-3)X2 = 0

x n-3 x2n+l 0.

Eventually we arrive at 6A3n- 2 . 0. Applying Theorem 4.2 completes

the proof.

4.2 In Case A and 6 Commute

Theorem 4.4 If n6 m = 0 and [X,6] = 0, then either X is nilpotent

or 6 is nilpotent.
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Proof V x,y R, X n6 (xy 0

" 0 = nm6-xxx-y)
WI.

ni m-i n m+I n-l

-6 1-A 2nx6m+lxn-ly

'0 =n 6m 6m-2 2n m+l n-l

.n, .6m-2.x2n X62m+1 x n-1 ,)= A!,. A x6 A y)

m m-2 x3nx62m+ixn-l i

0 = xn6m (6m-3x3nx 2m+ixn-ly)

M Xfn (S m-3 x3nx63m+i xn-Y)

- 6m-3x4nx6
3m+Ixn-ly

0 = n(,(m-)nx6(m-2)m+l n-ly

M ,n(6,(m-1)nX6(m-1)m+lxn-ly)

=~ 6Amx (m-)m+lin-* xn3 mnx6(-l)m+i nly

0 n(An 6 ln)

- A(m+l)nx m2 +iXn-i

n-1m2+1 n-i ml 2(m+l)n-1
By Lemma 3.14, either X = 0 or = O

*'! X2(r+l)n-1 1n-i m
If x 0, we apply the above argument to A a -0 to get

n-2 m2+1  n-26 m 
2  2(m2+2)(n-1)'l

A 0 or - 0. If X is not nilpotent
m

we continue this process to eventually get 8 0.
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One should observe that if A1,X2, and X3 are derivations of a9.

prime ring R and AXAm h . 0, it does not follow that X is nilpotent
1 23 i

for at least one i. For example, let D be a division ring and consider

D3 x 3" Assume X1,A2 , and X3 are the inner derivations defined by the

unit matrices E i, E22, and E 33 respectively. Then Xi is obviously

not nilpotent and A A X AX for i,j - 1,2,3. For fixed i,ij i

AXix  I xEikEik_ x.iE1 V X =(xi) D3
i k=1ii i x

Therefore AX 1 x13E13 + x12E12 - x 21E - x 31E31

X 2 (11x )  1 x12E12 - 21E 21

.)

• - A3 (A2(AIX)) =f 0.

.'4i
• I. .2 , i -v -, , , : ..? .- -: .
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5. DERIVATIONS SATISFYING A POLYNOMIAL IDENTITY

IN MORE THAN TWO VARIABLES

In this chapter we assume R is a prime ring, characteristic R 0 2,

and X,6,y,e, and or are derivations of R. From Posner's Proposition

(2.1) we know- XS - y implies either A - 0 or6- 0. What happens if

X6 - y 2? More generally, what happens if X6- yc? Answers to these

questions are given in Theorems 5.4 and 5.5. We also investigate the

case where A6 - y 3 and show in Theorem 5.7 that X8 - y3 implies

either X - 0 or 6 = 0. We begin with a few lemmas.

Lemma 5.1 Assume f and g are functions of R into R. Then

f(x)zg(y) + g(x)zf(y) - 0, V x,z,y 6 R, 4mplies either f - 0 or g - 0.

Proof. We have f(x)zg(x) + g(x)zf(x) - 0, V x,z 6 R. Assume f 0 0.

Then f(xI) 1 0 for some xI 1 R implies g(x1) = 0 by Proposition 2.7.

Therefore f(x1 )zg(y) - 0, V z,y 6 R, and since R is prime, g - 0.

Similarly g 0 0 implies f - 0.

Lemma 5.2 Assume f and g are nonzero functions of R into R. Then

f(x)zg(y) - g(x)zf(y) - 0, V x,z,y 6 R, implies f - cg for some c C C.

Proof. If a y E R such that g(y) 0 0 and f(y) 0 0, then by Lemma

3.8 we are done. Assume no such y exists. Thus V y 6 R, g(y) - 0 or

f(y) - 0. However, g # 0 implies 3 w e R such that g(w) 0 0 and

therefore f(w) - 0. Then f(x)zg(w) - g(x)zf(w) - f(x)zg(w) - 0,

V x,z C R. By the primeness of R, f - 0, a contradiction.
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Lemma 5.3 If A6-YX=a, then either X = 0 or 6 = y.

Proof. Note that X(6-y) -X6- y - a +yX-Ly= a + [y,)].

Since the commutator of two derivations is again a derivation, we use

Proposition 2.1 to conclude that either X - 0 or 6 -y = 0.

2
Theorem 5.4 If X,6, and y are nonzero and X6-y -a, then

-1
X - cy and 6 - c y for some c E C.

Proof. V x,y E R, (X6 - y2)(xy) = a(xy)

80 X6xy + Xx6y + 6xXy + XxSy - 2 xz - 2yx~y - x2 y= axy + xay

"o 2yxy - Xx6y -6xy -0. (5.1)

Replacing x by xz yields

2yxzyy - Axz6y - 6xzXy = 0. (5.2)

We now fix y 6 R and use (5.2) to show Xy = 0 6 6y 0m yy = 0.

Note that

Ay - 0 or 8y - 0 -- 2yzyy - 0, V zE R yy 0 (5.3)

Also note that

Y " 0 Axzy + xzy 0 V x,z E R

to Xyz6y + 6yzxy = 0 V z E R

-* either Xy - 0 or 6y - 0 by Proposition 2.7.

However,

Xy # 0 and 6y - Ox6xzXy 0 V x,z E R 6 - 0, a contradiction.

and

Ay -0 and 6y 0- Axz6y = 0 V xz E R -o.X - 0, a contradiction.



43

Thus, yy - 0 Xy 0 and 6y =0. (5.4)

- Together (5.3) and (5.4) imply Xy = 0 6y - 0 yy - 0. There-

fore, a y e R such that 2yy 0 0, 6y #0, and )y #0. Applying

Lemma 3.8 to (5.2) we obtain y = a) + b6 for some a,b E C.

Replacing z by yz in (5.2) yields, V x,zy E R,

2yxyzyy - XxyzSy - 6xyz~y - 0.

Using (5.1) we get

Ax6zYy + 6xAzYy - XxYz6y - xyzy - 0.

Replacing x by xs and y by ty yields, V x,sz,t,y e R,

Axs6ztyy + 6xskztyy - )xsyztay-Sxsyzt~y - 0

" )xs(6ztyy - yzt6y) + axs(Xztyy - yztxy) f 0. (5.5)

Case 1: Assume a z,t,y E R such that (6ztyy - yzt6y) # 0 and.

(Xztyy - yztAy) # 0. By Lemna 3.8, X - d6 for some d E C. Therefore,

y - aX + bS - a(dS) + bW - (ad + b)d and letting c - ad + b we get

y - cd. Using (5.2) we get

2cSxzcSx - ddxz~x - 6xzdSx - 0

S(2c2 - 2d)6xz6x 0

" c2  d or cd- 1 -c 1.

Therefore, y - cd - (cd-1)X - c- X, as we desired.

Case 2: A'qume z,t,y e R such that (6ztyy - yzt6y) # 0 and

(Aztyy - yztXy) # 0. This implies for each fixed z,t,y E R,

6ztyy - yztgy - 0 or Xztyy - yztXy - 0. If 3 some z,t,yCR, such that

8ztyy - yzt8y - 0 (# 0) and Xztyy - 7ztXy # 0 (- 0), then using (5.5)

*.- .- -. . . . %
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we get 8 = 0, a contradiction (X 0, a contradiction). Therefore

Uztyy - yzt6y = 0, V z,t,y E R, or Aztyy - yztXy = 0, V z,t,y E R.

Case 2.1: If 6ztyy - yzt6y = 0, V z,t,y E R, then Lemma 5.2 implies

y = c6 for some c E C. Using y = c6 in (5.5) we get

6xs(xztcy - csztxy) = 0

= Azt6y - Sztxy = 0

X -=d6 for some d E C by Lemma 5.2.

The proof is completed as in Case 1.

Case 2.2: If Aztyy - yzt~y 0, V z,t,y E R, then by Lemma 5.2,

cY A for some c1 E C. Using y - c 1X in (5.5) we get

Xxs(6ztc-l Xy - c-1 xztsy) = 0

6ztxy - Azt6y = 0

= X - d6 for some d E C by Lemma 5.2.

Again the proof is completed as in Case 1,.

Theorem 5.5 If A,S,y, and c are nonzero and X6-y -a, then 3

c E C such that

~-1 1 ) X - Cy and 6 -=- c

or 2) X - cc and 6 - c y.

oI'.

-i.
• , ,''--F". . ' . "'' , ' . . , . ' .. " .' J - . . -" ' % ,"-" ' "- ''",- ".

' -
' ' ' -



Proof. V Xy C- R, (X6- ye)(xy) -a(xy)

A4Sxy + AXXY + SxAy + xx6y -yexy -Yxcy -CxYY- xycy -Oxy + xoy

*Xxdy + axxy - YxCy - xyy- 0. (5.6)

Replacing x by xz yields

)Axz6y + 6xzxy - YXZEy - cz = 0. (5.7)

Replacing z by )tz yields

Xx~z6y + 6x)xzxy - yXZCY - £xXzyy= 0.

Using (5.6) we get

Xxczyy + Xxyzey - xx6zxy + 6xxzxy - yXXzcy -CXXzyy 0.

Replacing x by xs and y by ty yields

Xxscztyy + )Xxsyztcy - )xs6ztxy

.4,+ 6xsxztxy - rXsxztey - exsxztyy -0

- - - ~(6xsxz - xxs~z)txy + (Axsyz - yxs)AZ)tey

-. Xxsez - CXSXZ)tyy -0. (5.8)

Case 1: Assume I x,s,z E R such that 6xsXz - Xxs6z #0,

XxsYz - yxsAZ 0 0, and Xxsez - exsXz 0 0, This implies for each

fixed x,s,z CE R, q1- 6xsXz -Xxs6z - 0, q 2 a xsyz - YxXXz - 0,

or q m xscz - exs~z - 0. We now use (5.8) and investigate the

following possibilities:

Case 1.1: If a x,s,z 6 R such that q~ 0 and q q 3  0, then

X- 0, a contradiction.

Case 1.2: If 3 x,s,z E R such that q 0 and q, q3 -0, then

C 0, a contradiction.
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Case 1.3: If g xs,z E R such that q 0 and q q2 0, then

- - 0, a contradiction.

Case 1.4: If a x,s,z E R such that ql 0, q2 0 0, and q3 = 0, then

A - cc for some c E C by the left-right symmetry of Lemma 3.8.
(-1y -l

Therefore A6 - ye- a implies c6 - (c y)c - c a and we conclude

a - c1 y by Lemma 5.3.

Case 1.5: If a x,s,z E R such that q1 # 0, q3 0 0, and q2 - 0, then

A- cy for some c E C by Lemma 3.8. Using X- cy in (5.7) we get

cyxz6y + 6xzcyy - yxzcy - Sxzyy 0

yxz(c 6- )y + (c 6- )xzyy = 0

c 6- c 0 or 6 = c1 by Lemma (5.1).

", Case 1.6: If 3 x,s,z E R such that q2 0 0, q3 0 0, and ql 
= 0, then-p-

y - be for some b E C by Lemma 3.8. Therefore A6 be2 - a implies

(b-iA) 6 - c2 - b- a. By Theorem 5.4, b-1  - cc and 6 - 1c for

some e C. Note that b- cc yields - bcc cy.

Case 1.7: If q1 = SxsAz - AxsSz - 0, V x,s,z 6 R, then A - b6 for

some b e C by Lemma 5.2. Therefore b62 - ye - a implies
(b 1Y)c _ 62 ._b-la. By Theorem 5.4, b- yI c -1 6and c - c 6 for

some c 6 C. Notice that A - bS - b(cb-1Y) - cy.

Case 1.8: If q2 = Xxsyz - yxsXz - 0, v x,s,z E R, then A - cy, for

4

Ssome c G C by Lemma 5.2. We have as in Case 1.5, 6 c1 C.

4

*57
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Case 1.9: If q3 Axaz - cxsAz 0, V x,s,z E R, then X - cE for

-1
some c E C by Lemma 5.2. We have as in Case 1.4, 6 = c y.

Case 2: Assume a x,s,z E R such that 6xs~z - Xxs6z # 0,

XxsYz - yxsXz 0 0, and Xxsez - cxsXz # 0. By Lemma 3.8, y - aX + de

for some a,d e C. If a - 0, then y - de (Case 1.6). If d - 0 then

y - aX (Case 1.5). Therefore assume a 0 0 and d # 0. Using (5.8)

we get

(6xsAz - Xxs6z)ty + (aXxskz + dXxsez - a)xsz - dcxskz)tcy

+ a(Xxscz - cxs)z)tXy + d(Xxscz - exsz)tcy - 0

so [(6xs~z - Xxs6z) + a(Xxscz - £xs~z)]tqy
.4

+ 2d(Nxsez - exsXz)tcy - 0. (5.9)

Case 2.1: Assume a x,s,z E R such that
%°

p1 = [(6xsz - Xxsdz) + a(Xxscz - cxsXz)] 0 0

and
4.

.4

-P2 2d(Xxsez - exs~z) 0 0.

Then X cc for some c G C by Lema 3.8 and as in Case 1.4, 6 = c y.

Case 2.2: Assume I x,s,z ( R such that p 1  0 and P2 0 0. Then for

each fixed x,s,z E R, either p1 
= 0 or P2 - 0. If R x,s,z E R such

* that p1 - 0 (0 0) and P2 0 0 (- 0), then c 0 0, a contradiction

(X 0, a contradiction). We conclude therefore that V x,s,z E R,

(6xs~z - Xxs6z) + a(Xxscz - cxsXz) 0

ac)xsXz -xs( - ac)z 0. (5.10)
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If 6 " ac, then (5.9) becomes

[a(exsXz - Xxsez) + a(Xxsez - £xsXz)]tXy

+ 2d(Xxsez - sxs~z)tcy - 0

2d(Xxsez - exsXz)tcy - 0

" Axscz - exsAz = 0, a contradiction.

Therefore 6 0 ac and we may apply Lemma 5.2 to (5.10) to conclude

that 6- ac- eX for some e E C, e 0 0. We now have y - aX + de

and 6 = e X+ ac. Using (5.7) we obtain

-xze~y + Xxzacy + eXxzXy + aexzXy - a~xzcy - dexzey

- cxza~y - exzdcy - 0

so 2eXxz~y - 2dcxzey - 0

so e~xzAy - dcxzcy - 0.

Then a y C R such that eXy 0 0 and dcy 0 0. (If not then , - 0 or

- 0, a contradiction). Therefore A, - cc for some c E C by Lemma
-l

3.8 and as in Case 1.4 we have 6 . c -.

Lemma 5.6 If cA2 + 6 - a where c E C, c y 0, then A - 0.

Proof. V x,y E R, (c) 2 + 63 )(xy) - o(xy)

. cA2xy + 2cXxXy + cxX2y + 63xy + 362x6y + 36xS 2 y + x6 3 y - axy + xay

2c~x~y + 36 2x6y + 36x6 2y - 0. (5.11)

Replacing x by xz yields

2c~xz~y + 2cxXzXy + 36 2xz6y + 66x6z6y + 3x62 z6y

+ 36xz62y + 3x6z62y -0

, .,:.../ ,.... .. %.--.;.. ... -... ,.. -..... '-.,....,.. . : -. " k ,.. , - .i < . .'.- ,. .'.-....-. . .. .... , :J
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= 2cAxzXy + 362xz6y + 66x6z6y + 36xz62y 0.

Replacing z by 6z yields

2 2 2
2cXx6zXy + 36 xzdy + 66xd z6y + 36x6z6 y = 0.

Using (5.11) we get

2cAx6zXy - 2c~xz6y - 2c6xXz~y = 0

X Ax6z~y -AxXz6y - 6xXzAy - 0.

Replacing x by xs and y by yt yields

Xxs6zyxt - xxsxzy6t - 6xsxzyxt - 0

* Axs(6xyxt - Xxy~t) - 6xs(\xyXt) - 0. (5.12)

Case 1: Assume a z,y,t 6 R such that 6zyXt - Azy6t ' 0 and

AxyXt 0 0. Then 6 -a) for some a 6 C by Lemma 3.8. Using (5.12)

we get

Xxs(aXzyXt - Azya~t) - a~xs(XzyAt) - 0

- Xxs zyXt - 0

Case 2: Assume I zy,t 6 R such that 6zy)t - Xzy6t 0 0 and

Xzy~t ' 0. This implies for each fixed z,y,t e R, either

6zyAt - Azy6t - 0 or Axylt - 0. If a x,y,t 6 R such that

8zyXt - Azy~t - 0 (0 0) and XzyAt 0 0 (- 0), then using (5.12) we get

6 - 0 (A - 0). Notice that 6 - 0 implies X- 0. Therefore assume

AzyAt - 0, V z,y,t E R, or 6xyAt - Xzy6t = 0, V z,y,t E R. If

. x .
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XxY)~t =0, then obviously X~ - 0. If SxyXt -Xxyt~t =0, then from

(5.12) we obtain Oxs(Xzy~t) - 0. This implies 6 - 0 or X = 0 and

again we must have X -=0.

Theorem 5.7 If AS - Y3 = a, then either A =0 or 6 =0.

Proof. V x,y E R, W6 - Y3 )6cy) -a(xy)

- 6xy + xx6y+ SxAy + xA6y - y 3xy - 3y 2xyy -3yxy 
2y Y x 3 y

-axy +xay

)Xx6y + 6xy - 3y2xy- 3yxy 2y a0. (5.13)

Replacing x by xz yields

Xxz6y + x~zdy + 6xz~y + x~z~y - 3y2 xzyy - 6yxyzyy

-3xy 2zyy - 3yxzy 2y - 3xyzy 2y - 0

Xxz~y + 6xz~y - 3y .2 xzy- 6yxyzyy - 3yxzy 2y 0.

Replacing z by yz yields

)Xxyz6y + 6xyzXy - 3y2 xyzyy - 6yxy 2zyy - 3yxyzy 2y M 0.

Using (5.13) we get

XXYZtSy + SxYzxy - AxdzYY - SxXzyy - yxxzdy -yxdzxy -0.

Replacing x by xs and y by ty yields

xxsyztsy + dxsyztxy - xxsaztyy -6xsxztyy

- yxsxzt6y - yxs6ztxy -0.

* xs(yzt6y - tSztyy) + Sxs(yztxy -Xztyy)

-yxs(xztay +- 6ztxy) - 0. (5.14)
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Case 1: Assume z,t,y E R such that yzt~y - 6ztyy # 0,

YztXy - AztYy 0 0, and Xzt6y + 6ztXy # 0. This implies that for each

fixed z,t,y E R, q yzt~y = O, q2 = yzt y - )zty = 0,

or q3 = Xzt6y - 6ztAy = 0. Now use (5.14) and consider the following:

Case 1.1: If R zt,y E R such that q 1 0 and q2 q3 = 0, then x = 0.

Case 1.2: Ifa z,t,y E R such that q2 0 and ql-q 3 =0, then 6 = 0.

Case 1.3: If 3 zt,y 6 R such that q3 0O and ql=q 2 =0' then y - 0.

Notice that Y = 0 implies A6 - a and by Posner's result, either A = 0
,o

or 6 - 0.

Case 1.4: If 3 zt,y G R such that q 1
00, q2 0, and q3 = 0, then

A c6 for some c E C by Lemma 3.8. Applying Lemma 5.6 to

C62  y3 - a we get 6 - 0.

Case 1.5: If R zt.,y E R such that ql 0 0, q2=0, and q3 #0, then

Y - cA for some c E C by Lemma 3.8. Use (5.14) to obtain

v x,s,z,t,y 6 R,

Axs(cAzt6y - 6ztcAy) - cXxs(Xzt6Y + 6ztXy) = 0

MO cAxs(xztay - 6ztXy - Xzt6y - 6ztAy) = 0

Axssztxy - 0

* * either A - 0 or 6 - 0.

Case 1.6: If 3 zt,y C R such that ql=0, q2 0 0, and q3 #0, then

y - c8 for some c e C by Lemma 3.8. Use (5.14) to obtain

V x,s,zt,y e R,

axs(caztxy - Xztcay) - cSxs(Aztsy + 6ztXy) - 0

* c6xs(6ztxy - Xzt6y -ztdy - aztXy) = 0
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• 8Xs~zty = 0

al either 8 - 0 or A - 0.

Case 1.7: If ql- yzt6y - 6ztyy - 0, V zt,y E R, then y- 0, 8 -0, or

5 - cy for some c r C by Leuma 5.2. This is Case 1.6.

Case 1.8: If q2 = YztXy - Xztyy - 0, V z,t,y E R, then y = 0, X = 0,

or y - cA for some c E C by Lemma 5.2. This is Case 1.5.

Case 1.9: If q3 = Xzt~y + 6zt~y - 0, V z,t,y E R, then by Lemma 5.1,

either X - 0 or 6 - 0.

Case 2: Assume a z,t,y E R suci that ql 0 0, q2  0, and q3 0.

By Leuma 3.8, A - c6 + dy for some c,d'E C, c 0 0 or d 0. If c - 0,

then A - dy and we have Case 1.5. If d - 0, then A - c6 and we have

Case 1.4. If c 0 0 and d 0 0, then substitute c6 + dy for X in (5.14)

to get V xs,z,t,y E R,

c6xs(yztSy - 8ztyy) + dyxs(yzt6y - 6ztyy)

+ Sxs(yztc~y + yztdyy - c6ztyy - dyztyy)

- yxs(cSzt6y + dyzt6y + SztcSy + 6ztdyy) - 0

so 26xs(cyztdy - c6ztyy) - 2yxs(cdzt6y + dSztyy) - 0

me. Sxs(cyzty - c~ztyy) - yxs(cdzt~y + d6ztyy) - 0. (5.15)

Case 2.1: Assume l z,t,y 6 R such that cyzt6y - c6ztyy 0 0, and
c~ztSy + d~ztyy 0 0. Then for each fixed z,ty E R, either

p1 - cyzt6y - cSztyy - 0 or P2 - cSzt6y + d6ztyy - 0. Ifa z,t,y G R

such that p1 -0 (0 0) and P2 0 0 (- 0), then y - 0 (6 - 0). Therefore

assume c6zt6y + d6ztyy - 0, V z,t,y E R. Using this and (5.15) we get

=, .• - € "/ - - .-. ,-.-. -... ..- .'. . -.- ,.- .-. -..N. . •.
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4i 6xs(cyxtay - caztyy), V x,s,z,t,y E R. Since a z,t,y E R such that

*q, # 0, we conclude that 6 - 0.
..

* Case 2.2: Assume H z,ty E R such that p1 #0 and p2 # 0. Then

by applying Lemma 3.8 to (5.15) we obtain y = a6 for some a E C.

IThis is just Case 1.6.

.4

J

T ' '4 .- . - - - - ' , . .. -. .• .. . . .. . .
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6. DERIVATIONS SATISFYING OTHER IDENTITIES

6.1 Identity AXS - 0

Assume A and 6 are derivations of a prime ring R. By Lemma 4.1,

2
6 0 implies X - 0 or 6 -0. What happens if A6X = 0? A simple

example indicates that we cannot conclude that either A or 6 is

nilpotent.

Example 1: Let R be the 2 x 2 matrix ring over a division ring and

let A and 8 be defined by

X X 0 x 21X -2)x 21 x
21 122)

x.,. x,1,0xx

It follows easily that neither X nor 8 is nilpotent. However,x1 120 x 12-( 12 00 0
S21 x 2/ ) (l~ o2 21x

Example 2: Let R be the ring of real quaternions. If we define X

and 8 by Xx - [i,x] and 6x - [J,x], then XABABX8=O. However,

X and 6 are not nilpotent since in R, any derivation which

annihilates the center is inner and any nilpotent inner derivation

is induced by a nilpotent element.
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Although 16. - 0 does not imply the nilpotency of X or 6

sevwal interesting statements can still be made. We first need two

detailed lemmas.

Lemma 6.1 If Xa8 - 0, then either 62X - 0 or 2 (AxXy)A(XzXw) - 0,

V xy,zw E R.

Proof. For all xy E R, X6X(xy) - 0

M* 6Axy + X2x6y + XxAy+ Axxy + 6xX2y + x6Xy - 0.

Replacing x by 6Xx yields X62xAy + 62 Xx 2y M 0 (6.1)

or .

Aay + aX2y - 0 where a - 62 Xx.

Replacing y by yz yields Xa(Xyz + yXz) + a( 2yz + 2XyXz + yX 2z) 0

or

Xa(yXz) + a(2Xy~z + y 2z) M 0.

Replacing y by Xy yields Xa(XyXz) + a(2 2yAz + yA 2z) - 0

or_ ( 2y ,2 -. O

a(A yAz + AyX z)

Replacing z by zw yields a(A 2yAzw + A 2yzxw + AyX 2zw + 2AyXzAw

+ Xyz 2W) - 0.

Replacing z by Xz yields a(A2yAz~w + 2XyA2zAW + AyXzA2w) - 0

or

'2 Az 2 )aXy(. z.w + AzAW) 0 0.

Replacing y by yv yields a(Xyv + ylv) A (Xz~w) a 0.

Replacing v by X(Xs~t) yields a(XyX(Xs~t) + yX 2(Xst))A(Xzxw) - 0

or
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2
ay x Cs t)xLzkw) = 0.

42 2*Thus, either 6 2x = 0, V x E R or A (xsxt)x(xzxw) = 0, V st,z,w E R.

Lemma 6.2 If A2 (xxAy)A(AzXw) - 0, V xy,zw E R, then either

5 - or X(Xx~y) 0, V x,y C R.

Proof. Assuming b - X(Axly) we have XbX(Az~w) = 0.

Replacing w by wv yields Xb(X 2 zxwv + X2 zwxv + xzA 2 wv + 2Xzxwxv

) + xzw 2v) - 0.

Replacing w by Xw yields Ab(2 z~w~v + 2Az2 wxv + xzxw2 v) = 0

-. or

XAXzX(Xw bv) - 0.
<6

Replacing z by zu yields Xb(Azu + z~u)X(Xw~v) - 0. (6.2)

Replacing z by AzXt in (6.2) yields AbAzAtAuA(Awlv) - 0.

Replacing u by Au~t in (6.2) yields AbzX(Xu~r)X(AwAv) = 0.

Thus either X 2(AxAy) - 0 or A(AuAr)A(AwAv) - 0.

Case 1: A2(AxAy) - 0 A3xAy + 2A2xA2y + AxA3y - 0.

Replacing x by xs yields (A 3xs + 3A2 xs + 3AxA 2s + xA 3s)Ay

+ 2(x2xs + 2Axs + xA2 s)A 2 y + (Axs + xxs)x 3y - 0

or

A 3xsAy + 3A 2xAsAy + 3AxA 2sAy + 2A 2xsA2 y

+ 4AxAsA 2y + AxsA 3y - 0.

2 2x3 4 2 2 2Replacing s by s yields A xX s~y + 2XxX sAy + 2X xA sA y
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+ 4XxX 3sx 2Y + X x 2sx,3y = 0

• ) 2 x 3 SAY + Xx )4sX Y + 2X 2xx,2sX,2y + 2XxX 3s 2y = 0

A 2 x3 sy+22 2x 2 Y XX2 x3Y=b xX3s~y + 2A2xA2sAy - Ax2s 3y = 0

x -2 xsx3y - x2s23y 0

so X(xks)A3y = 0.

Using Lemma 3.14 we obtain that either A f 0 or A(Xx~s) = 0,

4., VX,s 6 R.

Case 2: A(AuAr)A(AwAv) - 0 -- X(XuAr)(X 2wAv + xwA 2v) 0. (6.3)

Replacing w by wp in (6.3) yields

2 2 2 2A(AuAr)(A p v + 2XwXp~v + wA pXv + XwpX v + wxpA v) - 0.

Replacing w by XwAq yields A(Au~r)Xw~qA(ApXv) = 0.

Replacing v by vg in (6.3) yields

X(XuAr) (X2wxvg + A2wvxg + Xwx2vg + 2XwXvg + XwvX g) - 0

or

-(Au~r)(2 wvAg + 2Xw~v~g + XwvX 2g) = 0.

Replacing v by Xv yields X(AuAr)XwX(Av~g) - 0.

Replacing w by w~h yields A(Au~r)(AwXh + wX2 h)(Xv~g) - 0

or

X(Au~r)w 2hX(Av~g) - 0.

Thus, either A(Xu~r) = 0 or A 2hX(Avg) -O.

J-
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N As a final note, applying Lemma 3.14 to X2 h(AvAg) = 0 yields

* 3
13 = 0 or )(Xv~g) = 0 V v,g E R.

Theorem 6.3 If X6X = 0 and if neither X nor 6 is nilpotent, then

x2k+l +
is a derivation, V k E Z

Proof. Combining Lemmas 6.1 and 6.2 we have either 62 X = 0,

*-'' = 0, or X(XxXy) - 0, V x,y 6 R. Considering the hypotheses and

": Theorem 4.3, we must have X(Xx~y) = 0, V x,y E R. The proof is

complete by using Lemma 3.5.

Theorem 6.4 If A6X = 0 and if neither X nor 6 is nilpotent, then

-2a2 2 x22.

Proof. X(x~y) - 0, V x,y E R 50 X6(xXy + x 2y) - 0

10 X(6Axxy + x6y + 6xA2y + x6A2y) - 0

"Ax2y + A 2x6AY +  xx2y + 6xx 3 y + xx62Y =O. (6.4)

2 2
x A2(xy) - 0, V x,y E R so X6(Xxy + xXy) 0

,N2 (6)2(xy + Xx6y + SxXy + xdxy) - 0

x xx 2y + X3x~y + X2x x6y + Xxx2y + 6xx3y + X2x6Xy- 0. (6.5)

Subtracting (6,4) from (6.5) gives A3x6y + x2xX6y - AxdA2y = 0.

Replacing y by Ay yields 3 x6xy - X6X 3y w 0. (6.6)

3 3 3 3
Replacing x by xz yields X xz6ay + xX z6ay - xxz6x y - xxzdA y M 0.

* . . . . . . . . . . .* % * .
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Replacing z by 6Xz yields A3x6xz6xy - Ax6Az6A3y - 0

or

x63 z6xy - xx6Az6x3y = 0.

By Lemma 3.14 we have 6X3z6Ay - 6xz6A3 y - O.

From (6.6) we know 6(X x6Ay - x6 3y) = 0

no 6x 3 x6xy + X3x62 Ay - 6Ax 3y - Xx6 2 3y =f 0

Mo. x3 x62 Ay - x62 A3 y = O.

Using (6.1) we have -A2 xA6 2 Ay - Xx6 2 A3y = 0.

Using A(AsAt) - 0, it follows that AxA2 6 2Ay - x62A y ffi 0.
By Lena 3.14 we have I2N2x - 23 0

or (22 _ 2 2) O
(XA 6 2 6 xA )x = 0.

-'V2

[e knowthatx2 a 62 6 2 2  is a derivation. Therefore

by Lemma 4.1, X262 2 62x 2 = 0.

Theorem 6.5- If A6X - 0 and if neither X nor 6 is nilpotent, then

AS 2k+l X 0, V k Z+ .

Proof. Theorem 6.4 implies (A2 6 2A2 )A - A2 6 3A - 0. In

Theorem 6.3 we saw that A(AxAy) - 0, V x,y C R. Substituting

6 3Ax for x we get A(A6 3AxAy) - x6 AxAy + A6 3AxA 2y - 6 3AxA 2y - 0.

CUsing Lemma 3.14 and the fact that A is not nilpotent we conclude

ap*" '': ' ' ' . o' . . ' ' -' ' ' ' ". ' ' '- . ' '' " ' '' ' ' - -. ' . " -° " -. ' -
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A63 AO. Starting with (A 6 2 _ 22)6A X=2, 5 X 0, we repeat

the same argument to obtain X6.X 0. We continue this process to

2k+l +arrive at k6 X = 0, V k E Z

6.2 Identity X6 2x = 0

Theorem 6.5 If AS2A = 0, characteristic R # 2, and R has no zero

divisors, then either X or 6 is nilpotent.

Proof. A6 A(xy) - 0, # x,y E R, -* X62(Axy + xAy) - 0

a* X[S2Axy + 2 6Xx6y + Ax6 2y + 62xy + 26x6Ay + x62Xy] 0

so 6 2AxAy + 2A6Ax6y + 26AxAjy + A 2x6 2y + AxA62 y

+ 62 y 2 A2 y + 2A6x6Ay + 26xA6Ay + Ax62 Ay= 0.

Replacing x by 6 2x yields A6 4AxAy + 6 4Ax 2y + 2A6 3Ax6Ay

+ 28 3AxAAy - 0.

Replacing y by yz yields X64 xAyz + X64 xyxz + 64 xx2yz

+ 26 4 x~yXz + 6 4 Axyk2z + 2A6 3Ax6yz + 2X83 Ax yz

- + 2X6 3 x6y~z + 2X6 3 xy6Xz + 26 3 ,xX6,yz + 26 3 ,x6xyxz

+ 26 AxAyz + 6 xyX z + 26 3AxAXyz + 26 3Ax6y2z
+ 26 3,xy6Az + 26 3 ,xy,6xz - 2.

xReplacing z by 6 3 z yields 26 3xy6 3Xz + 26 3x A2y63Az

+ 263AxAyA63Az - 0

or

i
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3 3 32 3 3 3A6 AX Ay aA Z + 6 3xx y6 A + 6 3xxy) 6 xz - 0.

Letting 63)x 3 a we obtain XaXya + a 2ya + aAykXa - 0, (6.7)

which by replacing y by yt yields

XaAyta + XayAta + a 2yta + 2ayXta + ay.2 ta

+ a~yt~a + ayxtxa - 0.

Letting y - a we obtain xaxata + Xaa)ta + aA 2ata + aAaXta

+ a)atAa - 0

which by replacing t by ta yields

Xaat~aa + a)ataXa - 0. (6.8)

Replacing t by t)aaw~a in (6.8) yields

Aaa(tXaawa)Xaa + aXa(tXaawAa)a,a - 0

-a~ataawAaaa + a)at)aawXaaXa - 0

"+ akat[-a~awXa~aa + Xaaw~aa~a] - 0

-* a)a - 0 or -aXawAa~aa + XaawXaaAa - 0

* aXa - 0 or -a~awXaaa - a)awa~aa - 0

I" a~a - 0 or axaw[xaaa + axaxa] - 0

S aa- 0 or Xaaa + aaa -0.

Replacing t by t~aawa in (6.8) yields

Aaa(t)aawa)Xaa + aXa(tXaawa)aka - 0

-aAataXawaAaa + aAataawaaa n 0

a~at[-a~awaAaa + XaawaaAa] - 0

- ,- : . ., . .. .. . . ... . . ... . . . . . . .. . . * .
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aAa - 0 or -aAawalaa + Xaawaa~a = 0

* aAa - 0 or XaawXaaa + XaawaaAa - 0

aka - 0 or Xaaw[Aaaa + aaXa] = 0

a a - 0, Xaa 0, or Xaaa + aaAa = 0.

Assume aXa #0 and Xaa 0 0. Then )aXaa + aaa =0 and

Aaaa + aaXa - 0.

Therefore

X(Xaaa + aaAa) - 0

so 2 2X Aaaa + Xalaa + Xaa~ka + Xaa~a + a~ala + aax a = 0

A2aaa + 2Xaaa + aaA2a - 0

go a(A2aaa + 2AaaAa + aaA2a)a - 0.

Notice that Xa~aa + a~aAa - 0 implies aA 2aa - 0 by (6.7).

Thus

2aXaalaa - 0

or

a)aa)aa - 0.

We have shown that either bXc - 0, V b,c, E 63XR; Xbc = 0,

V b,c E a 3R; or bAcdAef - 0, V b,c,d,e,f r 6 3R. If X and 8 are

3 3
not nilpotent then a3AR 0 0 by Theorem 4.3. Hence X6 3R - 0. But

I2
(6.7) implies Xbxyc + b 2yc + bAyAc - 0, V b,c, r6 63 R and V y 6 R.

It follows that x2y - 0, V y r R, a contradiction. We conclude that

either X or a must be nilpotent.
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7. OPEN QUESTIONS AND REMARKS

Conjecture 7.1: (Chapter 3) Assume R is a prime ring and A is a

derivation of R. We say A is algebraic over C if a a polynomial

p(t) - c0 + c1t +...+ cm tM , c E C, Cm + 0, such that p(A) x =

(c + clA +..o+ c Am)x - OV x E R. If A and An are both derivations

of R, then we saw in Section 3.3 that, with appropriate characteristic

restrictions, A is algebraic for n - 3,4,5, and 6. An obvious

question is whether or not the techniques used in Section 3.3 can be

modified or extended for n > 7. We conjecture that if A and An , n > 1,

are both derivations of a prime ring R, with characteristic

sufficiently large, then A is algebraic.

Conjecture 7.2: (Chapter 3) Martindale and Miers [24] have recently

proven Conjecture 7.1 to be true if A and An are inner derivations.

As stated in Proposition 3.1, they have not only shown that A is

algebraic, but also the following:

(1) either An _ 0 or the minimal polynomial *(x) of A

is semisimple if n is odd.

and (2) An - ' - 0 if n is even.

Assume for a moment that the characteristic of R is 0, 6 and 6n are

both derivations of R, and Conjecture 7.1 is true for outer as well as

inner derivations. Then 8 is algebraic. We would also like to conclude,

as in Proposition 3.1, that

(1) either 6n _ 0 or the minimal polynomial *(x) of 6

is semisimple if n is odd.

. / - ;'- ; . **, v,. . , *- . , .. . . . . . , . . . .-. . *. .* .. .. .. ,. . ,- .. . ..
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and (2) an-5 . 0 if n is even.

Indeed, this is the case if An is a derivation of Q, where A is the

unique extension of 8 to all of Q. For if An is a derivation, then

by Kharchenko's Proposition 2.2, A and An are both inner derivations.

Thus we can apply Proposition 3.1 to A and An, and since Chung,

Kovacs, and Luh [4] have recently shown that a 0A' we have the
!n
desired conclusion. Note that the above depends on A being a

derivation. Therefore we conjecture the following:

if 8 and n are both derivations of a prime ring R, then An is a

derivation of Q, where A is the unique extension of 8 to all of Q.

Conjecture 7.3: (Chapter 4) If A and 6 are derivations of a prime

-0 fo +ring R and a W 0 for n,m'E Z , then either A or 6-is nilpotent.

Conjecture 7.4: (Chapter 5) If A,6, and y are derivations of a

prime ring R, characteristic of R is not 2, and XS-y , where n is

odd, then either A - 0 or 8 - 0.

Conjecture 7.5: (Chapter 6) If A and 6 are derivations of a prime

ring R and AS 2A - 0, then either A or 8 is nilpotent.

Conjecture 7.6: (Chapters 3,4,5,and 6) Assume Ai, SJ are

derivations of a torsion-free, prime ring R and

I Ai - T S where t is even and t is odd. Then
1 1 2

either Xi is nilpotent for some i or SJ is nilpotent for some J.

As a final note, assume R is a prime ring and X is a derivation

of R. Let C[t] be the ring of all polynomials in t with coefficients

in C, and let Z[y] be the ring of all polynomials in y with
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coefficients in Z.- We wonder what can be said if H polynomialsJf CE Z~y] and p r= C~t] such that p(X)x -xf(x), V x r R. Obviously,

if f - 0, then we simply have the case where X is algebraic. The

following Theorem addresses the special situation where p(t) -t.

Theorem 7.7 Assume R is a torsion-free ring and X:R -i R is defined

by X(x) _a nx n -x1+.+ a 2 a1x where a E Z,a #0.

if -~ Az 1z 2+ z1X29Vz zt 2ER, then Ris nil.

Proof. If n - 1, then V x e R, X(x) - ax

so a 1 x
2 . N(x 2 ).)X+ x)c2alx2

22

If n > 2, then V x e R, then Xx 2 Xxx + Xx - 2xXx

a a 2 n + an-ix 2 n- 2 +.. a2x 4 + a1x 2

-2anx n+ +2a nlx n+...+2a 2x 3+ 2a1x2

* x 2n 2 x(g(x)) (7.1)

Note that ifal b+ =k0, then+x:2n+.b0. Theefoe a:ium: at least one

b #0. Multiplying (7.1) by 2 2n yields

n 2n 22 k k-l1 o

a n. 2 - bk kl

a wliii~2, &, ff& I
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Replacing x by 2x in (7.1) yields

a 22nx 2 n  2 22x2(bk2kxk + bk 2 k-lx k -  +...+ b12x + b )n ko-

Subtracting the last equation from the previous one yields

(22n - 2k+2 )b
xk+2 + (22n- 2k+1 )bkl xk + l +...+ (2 2)box2 -0,

k+2 k+l 2
or we may write ckX +c x k~ +...+ cox -O, where not all ci

are zero, say cj 0.

Replacing x by 2x,3x,...,kx, and (k + 1)x we obtain

k+2
1 ... 1 ckx

k

2k+2 2k+l... 22 +

k2 k+2 2 2
3 k23 **. 3 2ck- 2 x kO.

(k+ 1 +2  (k + ) k+l . (k + )] cx

Since the Vandermonde determinant is not zero in Z, we have x J + 2 0.

In [14], it is shown that if R is a ring, P 0 (0) is a right ideal
Z+ an

of R, and 3 n e Z such that a 0, V a r P, then R contains a nonzero

nilpotent ideal. Therefore in Theorem 7.7, if R 0 0 and we consider

R itself as a right ideal, then not only is R nil, but R contains a

nonzero nilpotent ideal. Such an R cannot be prime. We conclude that

the only prime ring satisfying the hypotheses of Theorem 7.7,must be (0).
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